Prevention of carbohydrate metabolism disorders in rats by florotannins complex of the marine brown alga Sargassum pallidum under acute alcohol impact
- Authors: Sprygin V.G.1, Fomenko S.E.1, Kushnerova N.F.1
-
Affiliations:
- V.I. Il’ichev Pacific Oceanological Institute. FEB RAS
- Issue: No 2 (2025)
- Pages: 139-149
- Section: BIOCHEMISTRY
- URL: https://journals.rcsi.science/1026-3470/article/view/291874
- DOI: https://doi.org/10.31857/S1026347025020025
- ID: 291874
Cite item
Full Text
Abstract
It is shown that the complex of florotannins isolated from the marine brown alga Sargassum pallidum protects the pool of the oxidized form of NAD+-NADP+ from depletion during acute alcohol impact. Restoration of NAD+/NADH ratio provided preservation of redox potential in liver, necessary level of oxidized forms of metabolites of lactate dehydrogenase and glycerol-3-phosphate dehydrogenase shuttle cycles for maintenance of reactions of aerobic glycolysis and gluconeogenesis, pentose phosphate cycle, promoted prevention of tissue hypoxia and normalization of blood glucose level. This provides a basis for recommending the use of florotannin complexes as a prophylactic agent to attenuate the toxic effects of ethanol.
Full Text

About the authors
V. G. Sprygin
V.I. Il’ichev Pacific Oceanological Institute. FEB RAS
Author for correspondence.
Email: vgs2006@mail.ru
Russian Federation, Vladivostok
S. E. Fomenko
V.I. Il’ichev Pacific Oceanological Institute. FEB RAS
Email: vgs2006@mail.ru
Russian Federation, Vladivostok
N. F. Kushnerova
V.I. Il’ichev Pacific Oceanological Institute. FEB RAS
Email: vgs2006@mail.ru
Russian Federation, Vladivostok
References
- Боголицын К.Г., Дружинина А.С., Овчинников Д.В., Каплицин П.А., Шульгина Е.В., Паршина А.Э. Полифенолы бурых водорослей // Химия растит. сырья. 2018. № 3. С. 5-21. http://dx.doi.org/10.14258/jcprm.2018031898
- Венгеровский А.И., Маркова И.В.,Саратиков А.С. Методические указания по изучению гепатозащитной активности фармакологических веществ // Руководство по экспериментальному (доклиническому) изучению новых фармакологических средств. М.: Медицина, 2005. С. 683-691.
- Кушнерова Н.Ф., Спрыгин В.Г., Рахманин Ю.А. Регуляция метаболизма этилового спирта в организме олигомерными проантоцианидами как способ профилактики его токсического воздействия // Гигиена и сан. 2003. № 5. С. 58-60.
- Лелевич С.В. Функциональное состояние некоторых путей метаболизма глюкозы в печени крыс при хронической алкогольной интоксикации // Биомед. химия. 2009. Т. 55. № 6. С. 727-733.
- Спрыгин В.Г. Применение олигомерных проантоцианидинов для профилактики метаболических нарушений углеводного обмена в печени крыс при поражении этиловым спиртом // Сиб. мед.ж. 2012. Т. 111. № 4. С. 131-134.
- Титлянов Э.А., Титлянова Т.В. Морские растения стран Азиатско–Тихоокеанского региона, их использование и культивирование. Владивосток: Дальнаука, 2012. 377 с.
- Фисенко В.П. Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ. М.: Ремедиум, 2000. 398 с.
- Фоменко С.Е., Кушнерова Н.Ф., Спрыгин В.Г. Использование экстрактов бурой водоросли Sargassum pallidum и элеутерококка для профилактики стресс-индуцированных нарушений углеводно-липидного обмена в эксперименте // Эксперим. и клин. фармакол. 2019. Т. 82. № 8. С. 22-26. http://dx.doi.org/10.30906/0869-2092-2019-82-8-22-26
- Badawy A.a.-B. Alcohol and Gluconeogenesis—A Review // Alcohol Alcohol. 1977. V. 12. №1. P. 30-42. https://doi.org/10.1093/oxfordjournals.alcalc.a044054
- Bartosz G., Janaszewska A., Ertel D., Bartosz M. Simple determination of peroxyl radical-trapping capacity // Biochem. Mol. Biol. Int. 1998. V. 46. № 3. P. 519-528. https://doi.org/10.1080/15216549800204042
- Beecher G.R. Overview of dietary flavonoids: nomenclature, occurrence and intake // J Nutr. 2003. V. 133. №. P. 3248s-3254s. https://doi.org/10.1093/jn/133.10.3248s
- Bogolitsyn K., Parshina A., Druzhinina A., Ovchinnikov D., Krasikov V., Khviyuzov S. Physicochemical characteristics of the active fractions of polyphenols from Arctic macrophytes // J. Appl. Physiol. 2020. V. 32. № 6. P. 4277-4287. https://link.springer.com/article/10.1007/s10811-020-02226-w
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248-254. https://doi.org/10.1006/abio.1976.9999
- Brauer M., Ling M.F. The effects of chronic ethanol consumption on the intact rat liver studied by in vivo 31P NMR spectroscopy // Magn. Reson. Med. 1991. V. 20. № 1. P. 100-112. https://doi.org/10.1002/mrm.1910200111
- Chiva-Blanch G., Badimon L. Effects of Polyphenol Intake on Metabolic Syndrome: Current Evidences from Human Trials // Oxid. Med. Cell. Longev. 2017. V. 2017. Article ID5812401. https://doi.org/10.1155/2017/5812401
- Dmytryk A., Tuhy Ł., Chojnacka K. Algae as Source of Pharmaceuticals // Prospects and Challenges in Algal Biotechnology. 2017. Singapore: Springer Nature Singapore Pte Ltd. P. 295-310. https://doi.org/10.1007/978-981-10-1950-0_11
- Eggleston L.V., Krebs H.A. Regulation of the pentose phosphate cycle // Biochem. J. 1974. V. 138. № 3. P. 425-435. https://doi.org/10.1042/bj1380425
- Feraudi M. Determination of metabolite compartition in hepatic cells by varying the redox state in vivo // Arch. Int. Physiol. Biochim. Biophys. 1979. V. 87. № 5. P. 915-923. https://doi.org/10.3109/13813457909070539
- French S.W. Biochemistry of alcoholic liver disease // Crit. Rev. Clin. Lab. Sci. 1992. V. 29. № 2. P. 83-115. https://doi.org/10.3109/10408369209114597
- Gajdos A., Gajdos-Tr̈Oök M., Horn R. The effect of (+)-catechin on the hepatic level of ATP and the lipid content of liver during experimental steatosis // Biochem. Pharmacol. 1972. V. 21. № 4. P. 594-600. https://doi.org/10.1016/0006-2952(72)90338-3
- Godlewska K., Dmytryk A., Tuhy Ł., Chojnacka K. Algae as Source of Food and Nutraceuticals // Prospects and Challenges in Algal Biotechnology. 2017. Singapore: Springer Nature Singapore Pte Ltd. P. 277-294. https://doi.org/10.1007/978-981-10-1950-0_10
- Güçlü K., Kıbrıslıoğlu G., Özyürek M., Apak R. Development of a fluorescent probe for measurement of peroxyl radical scavenging activity in biological samples // J. Agric. Food Chem. 2014. V. 62. № 8. P. 1839-1845. https://doi.org/10.1021/jf405464v
- Hohorst H.-J. l-(+)-Lactate: Determination with Lactic Dehydrogenase and DPN // Methods of Enzymatic Analysis: Academic Press, 1965. P. 266-277.
- Jackson J.B. The proton-translocating nicotinamide adenine dinucleotide transhydrogenase // J. Bioenerg. Biomembr. 1991. V. 23. № 5. P. 715-741. https://doi.org/10.1007/bf00785998
- Klingenberg M. Nicotinamide-Adenine Dinucleotides (NAD, NADP, NADH, NADPH): Spectrophotometric and Fluorimetric Methods // Methods of Enzymatic Analysis (Second Edition): Academic Press, 1974. P. 2045-2072.
- Lamprecht W., Heinz F. Pyruvate // Methods of Enzymatic Analysis. Cambridge, UK: VCH Publishers (UK) Ltd, 1988. Vol.VI. P. 570-577
- Lang G. L-(-)-Glycerol 3-Phosphate // Methods of Enzymatic Analysis. – Cambridge, UK: VCH Publishers (UK) Ltd., 1988. Vol.VI. P. 525-531.
- Lieber C. Alcohol and the Liver: Metabolism of Ethanol, Metabolic Effects and Pathogenesis of Injury // Acta Med. Scand. 2009. V. 218. P. 11-55. http://dx.doi.org/10.1111/j.0954-6820.1985.tb08903.x
- Lieber C.S. New concepts of the pathogenesis of alcoholic liver disease lead to novel treatments // Curr. Gastroenterol. Rep. 2004. V. 6. № 1. P. 60-65. https://doi.org/10.1007/s11894-004-0027-0
- Liu X., Wang C.-Y., Shao C.-L., Wei Y.-X., Wang B.-G., Sun L.-L., Zheng C.-J., Guan H.-S. Chemical constituents from Sargassum pallidum (Turn.) C. Agardh // Biochem. Syst. Ecol. 2009. V. 37. № 2. P. 127-129. https://doi.org/10.1016/j.bse.2009.01.009
- Löhr G.W., Waller H.D. Glucose-6-phosphate Dehydrogenase // Methods of Enzymatic Analysis (Second Edition): Academic Press, 1974. P. 636-643.
- Mateos R., Pérez-Correa J.R., Domínguez H. Bioactive Properties of Marine Phenolics // Mar. Drugs. 2020. V. 18. № 10. P. 501. https://doi.org/10.3390/md18100501
- Michal G. D-Fructose 1,6-Bisphosphate, Dihydroxyacetone Phosphate and d-Glyceraldehyde 3-Phosphate // Methods of Enzymatic Analysis. Cambridge, UK: VCH Publishers (UK) Ltd., 1988. Vol. I. P. 342-350
- Nakai M., Kageyama N., Nakahara K., Miki W. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum // Mar. Biotechnol. 2006. V. 8. № 4. P. 409-414. http://dx.doi.org/10.1007/s10126-005-6168-9
- Nawaz A., Zaib S., Khan I., Ahmed A., Shahzadi K., Riaz H. Silybum marianum: An Overview of its Phytochemistry and Pharmacological Activities with Emphasis on Potential Anticancer Properties // Anticancer Agents Med. Chem. 2023. V. 23. № 13. P. 1519-1534. https://doi.org/10.2174/1871520623666230412111152
- Ovchinnikov D.V., Bogolitsyn K.G., Druzhinina A.S., Kaplitsin P.A., Parshina A.E., Pikovskoi I.I., Khoroshev O.Y., Turova P.N., Stavrianidi A.N., Shpigun O.A. Study of Polyphenol Components in Extracts of Arctic Brown Algae of Fucus vesiculosus Type by Liquid Chromatography and Mass-Spectrometry // J. Anal. Chem. 2020. V. 75. № 5. P. 633-639. http://dx.doi.org/10.1134/S1061934820050147
- Parys S., Rosenbaum A., Kehraus S., Reher G., Glombitza K.W., König G.M. Evaluation of quantitative methods for the determination of polyphenols in algal extracts // J. Nat. Prod. 2007. V. 70. № 12. P. 1865-1870. https://doi.org/10.1021/np070302f
- Ragan M.A., Glombitza K.W. Phlorotannins, brown algal polyphenols // Progress in Phycological Research. – Bristol: Biopress Ltd, 1986. P. 129-241.
- Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay // Free Radic. Biol. Med. 1999. V. 26. № 9–10. P. 1231-1237. https://doi.org/10.1016/s0891-5849(98)00315-3
- Reinke L.A., Tupper J.S., Smith P.R., Sweeny D.J. Diminished pentose cycle flux in perfused livers of ethanol-fed rats // Mol. Pharmacol. 1987. V. 31. № 6. P. 631-637.
- Shibata T., Ishimaru K., Kawaguchi S., Yoshikawa H., Hama Y. Antioxidant activities of phlorotannins isolated from Japanese Laminariaceae // J. Appl. Phycol. 2008. V. 20. № 5. P. 705-711. https://doi.org/10.1007/s10811-007-9254-8
- Singh I.P., Sidana J. Phlorotannins // Functional Ingredients from Algae for Foods and Nutraceuticals: Woodhead Publishing, 2013. P. 181-204. https://doi.org/10.1533/9780857098689.1.181
- Sprygin V.G., Kushnerova N.F., Fomenko S.E., Drugova E.S., Lesnikova L.N., Merzlyakov V.Y., Momot T.V. The Influence of an Extract from the Marine Brown Alga Sargassum pallidum on the Metabolic Reactions in the Liver under Experimental Toxic Hepatitis // Russ. J. Mar. Biol. 2017. V. 43. № 6. P. 479-484. http://dx.doi.org/10.1134/S1063074017060098
- Stern J.L., Hagerman A.E., Steinberg P.D., Winter F.C., Estes J.A. A new assay for quantifying brown algal phlorotannins and comparisons to previous methods // J. Chem. Ecol. 1996. V. 22. № 7. P. 1273-1293. https://doi.org/10.1007/bf02266965
- Stockwell T., Zhao J., Panwar S., Roemer A., Naimi T., Chikritzhs T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality // J. Stud. Alcohol Drugs. 2016. V. 77. № 2. P. 185-198. https://doi.org/10.15288/jsad.2016.77.185
- Strasbourg European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes. Strasbourg, 1986. ETS No. 123.
- Takahashi M., Satake N., Yamashita H., Tamura A., Sasaki M., Matsui-Yuasa I., Tabuchi M., Akahoshi Y., Terada M., Kojima-Yuasa A. Ecklonia cava polyphenol protects the liver against ethanol-induced injury in rats // Biochim. Biophys. Acta-Gen. Subj. 2012. V. 1820. № 7. P. 978-988. https://doi.org/10.1016/j.bbagen.2012.02.008
- Veech R.L., Eggleston L.V., Krebs H.A. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver // Biochem. J. 1969. V. 115. № 4. P. 609-619. https://doi.org/10.1042/bj1150609a
- Veech R.L., Guynn R., Veloso D. The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver // Biochem. J. 1972. V. 127. № 2. P. 387-397. https://doi.org/10.1042/bj1270387
- Xiao W., Wang R.S., Handy D.E., Loscalzo J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism // Antioxid. Redox Signal. 2018. V. 28. № 3. P. 251-272. https://doi.org/10.1089/ars.2017.7216
- Yamashita H., Goto M., Matsui-Yuasa I., Kojima-Yuasa A. Ecklonia cava Polyphenol Has a Protective Effect against Ethanol-Induced Liver Injury in a Cyclic AMP-Dependent Manner // Mar. Drugs. 2015. V. 13. № 6. P. 3877-3891. https://doi.org/10.3390/md13063877
- Ye H., Zhou C., Sun Y., Zhang X., Liu J., Hu Q., Zeng X. Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum // Eur. Food Res. Technol. 2009. V. 230. № 1. P. 101-109. http://dx.doi.org/10.1007/s00217-009-1147-4
- Zhang D., Wang C., Shen L., Shin H.-C., Lee K.B., Ji B. Comparative analysis of oxidative mechanisms of phloroglucinol and dieckol by electrochemical, spectroscopic, cellular and computational methods // RSC Adv. 2018. V. 8. № 4. P. 1963-1972. https://doi.org/10.1039/c7ra10875c
- Zhang D., Wang Y., Sun X., Liu Y., Zhou Y., Shin H.C., Wang Y., Shen L., Wang C., Wang S., Zou X. Voltammetric, spectroscopic, and cellular characterization of redox functionality of eckol and phlorofucofuroeckol-A: A comparative study // J. Food. Biochem. 2019. V. 43. № 7. e12845. https://doi.org/10.1111/jfbc.12845
Supplementary files
