Influence of different lighting and feeding regimes on the expression of the fadsd5, fadsd6, elovl2, elovl5a desaturase and elongase genes in the liver of juvenile Atlantic Salmon Salmo salar L. under aquaculture conditions

Capa

Citar

Texto integral

Resumo

The relative gene expression of enzymes – desaturases and elongases (fadsd5, fadsd6, elovl2, elovl5a, elovl4), which play a key role in the biosynthesis of long-chain polyunsaturated fatty acids, was studied in the liver of juvenile Atlantic salmon Salmo salar Linnaeus, 1758, reared under different lighting and feeding regimes in aquaculture conditions. The expression level of the fadsd5 desaturase gene was higher in Atlantic salmon smolts (0+), reared under round-the-clock lighting and feeding regime, compared to smolts from experimental group with natural photoperiod and daylight feeding. Changes in the level of gene expression (elovl2, elovl5a, fadsd5) in juvenile Salmo salar reflect adaptive processes at the molecular genetic level during the growth and development of fish and in response to changes in environmental conditions. The obtained results make it possible to assess the ability/requirement to the biosynthesis of PUFAs in juvenile salmon during its growth and development.

Sobre autores

S. Khurtina

Karelian Research Centre oof the Russian Academy of Sciences

Autor responsável pela correspondência
Email: pek-svetlana@mail.ru

Environmental Biochemistry Laboratory, Institute of Biology

Rússia, st. Pushkinskaya, 11, Petrozavodsk, 185910

S. Murzina

Karelian Research Centre oof the Russian Academy of Sciences

Email: pek-svetlana@mail.ru

Environmental Biochemistry Laboratory, Institute of Biology

Rússia, st. Pushkinskaya, 11, Petrozavodsk, 185910

М. Kuznetsova

Karelian Research Centre oof the Russian Academy of Sciences

Email: pek-svetlana@mail.ru

Environmental Biochemistry Laboratory, Institute of Biology

Rússia, st. Pushkinskaya, 11, Petrozavodsk, 185910

N. Nemova

Karelian Research Centre oof the Russian Academy of Sciences

Email: pek-svetlana@mail.ru

Environmental Biochemistry Laboratory, Institute of Biology

Rússia, st. Pushkinskaya, 11, Petrozavodsk, 185910

Bibliografia

  1. Власов В. А., Маслова Н. И., Пономарев С. В., Баканева Ю. М. Влияние света на рост и развитие рыб // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2013. № 2. С. 24–34.
  2. Мурзина С. А., Нефедова З. А., Руоколайнен Т. Р., Васильева О. Б., Немова Н. Н. Динамика содержания липидов в процессе раннего развития пресноводного лосося Salmo salar L. // Онтогенез. 2009. Т. 40. № 3. C. 208–214.
  3. Мурзина С. А., Провоторов Д. С., Воронин В. П., Кузнецова М. В., Курицин А. Е., Немова Н. Н. Показатели липидного обмена у сеголеток атлантического лосося Salmo salar в условиях аквакультуры в южном регионе РФ при разных режимах освещения и кормления // Известия РАН. Серия Биологическая. 2023a. № 2. С. 134–148. doi: 10.31857/S1026347022700081
  4. Мурзина С.А., Провоторов Д. С., Воронин В. П., Манойлова Д. И., Курицин А. Е., Пеккоева С. Н., Немова Н. Н. Фосфолипидный состав сеголеток атлантического лосося Salmo salar в процессе роста и развития в аквакультуре: влияние разных режимов освещения и кормления // Доклады российской академии наук. Науки о жизни. 2023б. Т. 509. С. 181–185. doi: 10.31857/S2686738923700397
  5. Немова Н.Н., Нефедова З. А., Мурзина С. А., Веселов А. Е., Рипатти. П.О., Павлов Д. С. Влияние экологических условий обитания на динамику жирных кислот у молоди атлантического лосося (Salmo salar L.) // Экология. 2015. № 3. С. 206–211. doi: 10.7868/S0367059715030087
  6. Khurtina S. N., Murzina S. A., Provotorov D. S., Voronin V. P., Kuritsyn A. E., Nemova N. N. Fatty acid composition of phospholipids and triacylglycerols of juvenile Atlantic salmon Salmo salar L: grown under different and feeding conditions in aquaculture conditions (North Ossetia – Alania) // Russian Journal of Developmental Biology. 2024 (в печати).
  7. Шульгина Н.С., Чурова М. В., Немова Н. Н. Влияние фотопериода на рост и развитие лососевых Salmonidae северных широт // Журнал общей биологии. 2021. Т. 82. №1. С. 68–80. doi: 10.31857/S0044459621010073
  8. Эколого-биохимический статус молоди атлантического лосося Salmo salar L. из некоторых рек бассейна Белого моря / Под общ. ред. Н.Н. Немовой. Петрозаводск: Карельский научный центр РАН, 2016. 204 с.
  9. Berrill I. K., Porter M. J., Smart A., Mitchell D., Bromage N. R. Photoperiodic effects on precocious maturation, growth and smoltification in Atlantic salmon, Salmo salar // Aquaculture. 2003. V. 222. № 1–4. P. 239–252. doi: 10.1016/S0044-8486(03)00125-X
  10. Berrill I.K., Smart A., Porter M. J., Bromage N. R. A decrease in photoperiod shortly after first feeding influences the development of Atlantic salmon (Salmo salar) // Aquaculture. 2006. V. 254. № 1–4. P. 625–636. doi: 10.1016/j.aquaculture.2005.10.036
  11. Björnsson B. T., Stefansson S. O., McCormick S.D. Environmental endocrinology of salmon smoltification // General and comparative endocrinology. 2011. V. 170. № 2. P. 290–298. doi: 10.1016/j.ygcen.2010.07.003
  12. Bláhová Z., Harvey T. N., Pšenička M., Mráz J. Assessment of fatty acid desaturase (Fads2) structure-function properties in fish in the context of environmental adaptations and as a target for genetic engineering // Biomolecules. 2020. V. 10. №2. P. 206. doi: 10.3390/biom10020206
  13. Carmona-Antoñanzas G., Monroig Ó., Dick J. R., Davie A., Tocher D. R. Biosynthesis of very long-chain fatty acids (C> 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase // Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2011. V. 159. №.2. P. 122–129. doi: 10.1016/j.cbpb.2011.02.007
  14. Castro L. F.C., Tocher D. R., Monroig O. Long-chain polyunsaturated fatty acid biosynthesis in chordates: Insights into the evolution of Fads and Elovl gene repertoire // Progress in lipid research. 2016. V. 62. P. 25–40. doi: 10.1016/j.plipres.2016.01.001
  15. Hansen T., Stefansson S., Taranger G. L. Growth and sexual maturation in Atlantic salmon, Salmo salar L., reared in sea cages at two different light regimes // Aquac. Fish. Manage. 1992. V. 23. № 3. P. 275–280. doi: 10.1111/j.1365-2109.1992.tb00770.x
  16. Hastings N., Agaba M. K., Tocher D. R., Zheng X., Dickson C. A., Dick J. R., Teale A. J. Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from α-linolenic acid in Atlantic salmon (Salmo salar) // Marine Biotechnology. 2004. V. 6. P. 463–474. https://doi.org/10.1007/s10126-004-3002-8
  17. Harkewicz R., Du H., Tong Z., Alkuraya H., Bedell M., Sun W., Wang X., Hsu Y-H., Esteve-Rudd J., Hughes G., Su Z., Zhang M., Lopes V. S., Molday R. S., Williams D. S., Dennis E. A., Zhang K. Essential role of ELOVL4 protein in very long chain fatty acid synthesis and retinal function // Journal of Biological Chemistry. 2012. V. 287. №14. P. 11469–11480. doi: 10.1074/jbc.M111.256073
  18. Imsland A. K.D., Roth B., Fjelldal P. G., Stefansson S. O., Handeland S., Mikalsen B. The effect of continuous light at low temperatures on growth in Atlantic salmon reared in commercial size sea pens // Aquaculture. 2017. V. 479. P. 645–651. doi: 10.1016/j.aquaculture.2017.07.014
  19. Guillou H., Zadravec D., Martin P. G., Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice // Progress in lipid research. 2010. V. 49. № 2. P. 186–199. doi: 10.1016/j.plipres.2009.12.002
  20. Jakobsson A., Westerberg R., Jacobsson A. Fatty acid elongases in mammals: Their regulation and roles in metabolism // Prog. Lipid Res. 2006. V. 45. P. 237–249. doi: 10.1016/j.plipres.2006.01.004
  21. Leaver M. J., Villeneuve L. A.N., Obach A., Jensen L., Bron J. E., Tocher D. R., Taggart J. B. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar) // BMC Genomics. 2008. V. 9. P. 299. doi: 10.1186/1471-2164-9-299.
  22. Leclercq E., Taylor J. F., Sprague M., Migaud H. The potential of alternative lighting-systems to suppress preharvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages // Aquac. Eng. 2011. V. 44. № 2. P. 35–47. doi: 10.1016/j.aquaeng.2010.12.001
  23. Li Y., Wen Z., You C., Xie Z., Tocher D. R., Zhang Y., Wang S., Li Y. Genome wide identification and functional characterization of two LC-PUFA biosynthesis elongase (elovl8) genes in rabbitfish (Siganus canaliculatus) // Aquaculture. 2020. V. 522. 735127. https://doi.org/10.1016/j.aquaculture.2020.735127
  24. Livak K. J., Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the method // Methods. 2001. V. 25. №4. P. 402–408. https://doi.org/10.1006/meth.2001.1262
  25. Miao L. H., Remø S. C., Espe M., Philip A. J.P., Hamre K., Fjelldal P. G., Skjærven K., Holen E., Vikeså V. , Sissener N. H. Dietary plant oil supplemented with arachidonic acid and eicosapentaenoic acid affects the fatty acid composition and eicosanoid metabolism of Atlantic salmon (Salmo salar L.) during smoltification // Fish & Shellfish Immunology. 2022. V. 123. P. 194–206. doi: 10.1016/j.fsi.2022.02.049
  26. Monroig Ó., Shu-Chien A.C., Kabeya N., Tocher D. R., Castro L. F.C. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions // Progress in Lipid Research. 2022. V. 86. Article ID101157. https://doi.org/10.1016/j.plipres.2022.101157
  27. Monroig Ó., Zheng X., Morais S., Leaver M. J., Taggart J. B., Tocher D. R. Multiple genes for functional Δ6 fatty acyl desaturases (Fad) in Atlantic salmon (Salmo salar L.): Gene and cDNA characterization, functional expression, tissue distribution and nutritional regulation // Biochim. Biophys. Acta. 2010. V. 180. P. 1072–1081. doi: 10.1016/j.bbalip.2010.04.007
  28. Monroig O., Navarro С., Tocher D. R. Long-Chain Polyunsaturated Fatty Acids in Fish: Recent Advances on Desaturases and Elongases Involved in Their Biosynthesis. En: Cruz-Suárez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Nieto-López, M.G., Villarreal-Cavazos, D. A., Gamboa-Delgado, J., Hernández-Hernández, L.(Eds), Avances en Nutrición Acuícola XI –Memorias del Décimo Primer Simposio Internacional de Nutrición Acuícola, 23–25 de Noviembre, San Nicolás de los Garza, N. L., México. Universidad Autónoma de Nuevo León, Monterrey, México, 2011. pp. 257–283.
  29. Morais S., Monroig Ó., Zheng X., Leaver M. J., Tocher D. R. Highly unsaturated fatty acid synthesis in Atlantic salmon: characterization of Elovl5- and Elovl2-like elongases // Mar. Biotechnol. 2009. V. 11. P. 627–639. doi: 10.1007/s10126-009-9179-0
  30. Nemova N. N., Murzina S. A., Lysenko L. A., Meshcheryakova O. V., Churova M. V., Kantserova N. P., Nefedova Z. A., Krupnova M.Yu., Pekkoeva S. N., Ruokolainen T. R., Veselov A. E., Efremov D. A. Ecological and biochemical status of the Atlantic salmon Salmo salar L. and the brown trout Salmo trutta L. at early stages of development // Biology bulletin reviews. 2020. V. 10. P. 239–249.
  31. Noori A., Mojazi Amiri B., Mirvaghefi A., Rafiee G., Kalvani Neitali B. Enhanced growth and retarded gonadal development of farmed rainbow trout, Oncorhynchus mykiss (Walbaum) following a long-day photoperiod // Aquac. Res. 2015. V. 46. № 10. P. 2398–2406. doi: 10.1111/are.12398
  32. Norambuena F., Morais S., Emery J. A., Turchini G. M. Arachidonic acid and eicosapentaenoic acid metabolism in juvenile Atlantic salmon as affected by water temperature // PLoS One. 2015. V. 10. № 11. e0143622. https://doi.org/10.1371/journal.pone.0143622
  33. Oboh A. Investigating the long-chain polyunsaturated fatty acid biosynthesis of the African catfish Clarias gariepinus (Burchell, 1822). PhD Thesis. University of Stirling, 2018.
  34. Ren H. T., Gao S. Y., Huang Y., Gao X. C. Temperature regulates fatty acid desaturase and elongase at the transcriptional level and modulates the fatty acid profile in the early stage of the common carp (Cyprinus carpio) // Czech J. Anim. Sci. 2023. V. 68. P. 313–321. doi: 10.17221/22/2023-CJAS
  35. Sprecher H. Metabolism of highly unsaturated n-3 and n-6 fatty acids // Biochim Biophys Acta. 2000. V. 1486. P. 219–231. doi: 10.1016/s1388-1981(00)00077-9
  36. Tocher D. R. Metabolism and functions of lipids and fatty acids in teleost fish // Rev Fisheries Sci. 2003. V. 11. P. 107–184. doi: 10.1080/713610925
  37. Tocher D. R., Fonseca-Madrigal J., Dick J. R. Effects of water temperature and diet containing palm oil on fatty acid desturation and oxidation in hepatocytes and intestinal enterocytes of rainbow trout (Oncorhynchus mykiss) // Comp Biochem Physiol B. 2004. V. 137. №1. P. 49–63. doi: 10.1016/j.cbpc.2003.10.002
  38. Tocher D. R. Fatty acid requirements in ontogeny of marine and freshwater fish // Aquaculture research. 2010. V. 41. № 5. P. 717–732. https://doi.org/10.1111/j.1365-2109.2008.02150.x
  39. Vestergren A. S. Regulation of Genes related to Lipid Metabolism in Atlantic salmon (Salmo salar L.) // Vitro and In Vivo Studies. Licentiate Thesis. Swedish University of Agricultural Sciences. Uppsala, 2012.
  40. Vestergren A. S., Trattner S., Mráz J., Ruyter B., Pickova J. Fatty acids and gene expression responses to bioactive compounds in Atlantic salmon (Salmo salar L.) hepatocytes // Neuro Endocrinol Lett. 2011. V. 32 (Suppl 2). P. 41–50.
  41. Villarreal C. A., Thorp J. E., Miles M. S. Influence of photoperiod on growth changes in juvenile Atlantic salmon Salmo salar L. // Journal of Fish Biology. 1988. V. 33. №1. P. 15–30. doi: 10.1111/j.1095-8649.1988.tb05445.x
  42. Xie D., Chen C., Dong Y., You C., Wang S., Monroig Ó., Tocher D. R., Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish // Progress in Lipid Research. 2021. V. 82, 101095. doi: 10.1016/j.plipres.2021.101095
  43. Zheng X., Tocher D. R., Dickson C. A., Bell J. G., Teale A. J. Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (Salmo salar) // Aquaculture 2004. V. 236. P. 467–483. doi: 10.1016/j.aquaculture.2004.02.003
  44. Zheng X., Tocher D. R., Dickson C. A., Dick J. R., Bell J. G., Teale A. J. Highly unsaturated fatty acid synthesis in vertebrates: new insights with the cloning and characterisation of a Δ6 desaturase of Atlantic salmon // Lipids. 2005a. V. 40. P. 13–24. doi: 10.1007/s11745-005-1355-7
  45. Zheng X., Torstensen B. E., Tocher D. R., Dick J. R., Henderson R. J., Bell J. G. Environmental and dietary influences on highly unsaturated fatty acid biosynthesis and expression of fatty acyl desaturases and elongase genes in liver of Atlantic salmon (Salmo salar) // Biochim Biophys Acta. 2005b. V. 1734. P. 13–24. doi: 10.1016/j.bbalip.2005.01.006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».