Habitat suitability and areal dynamics of rare desert species of myxomycetes of the genus Didymium under global climate change in Asia
- Authors: Vlasenko A.V.1, Vlasenko V.A.1
-
Affiliations:
- Central Siberian Botanical Garden SB RAS, st. Zolotodolinskaya
- Issue: No 6 (2024)
- Pages: 796–808
- Section: ECOLOGY
- URL: https://journals.rcsi.science/1026-3470/article/view/274445
- DOI: https://doi.org/10.31857/S1026347024060122
- EDN: https://elibrary.ru/ukbzth
- ID: 274445
Cite item
Full Text
Abstract
The ability to determine the spatial distribution of rare species is critical to understanding the environmental factors that influence them. Maximum entropy (MaxEnt) modeling of spatial distributions addresses this problem by allowing inferences about species distributions under environmental change from occurrence data. Using this method, we mapped the current and potential geographic distribution of two rare species of desert myxomycetes, Didymium mexicanum and Didymium nullifilum. Models of potential global species distributions were created using bioclimatic data and MaxEnt software to model species habitat suitability under current conditions (~1950–2000) and under projected changes in future climate (2100 AD) based on 18 spatial distribution points for D. mexicanum and 4 points for D. nullifilum. A detailed morphological description is given for the species. We identified the species D. mexicanum for the first time in Asia.
About the authors
A. V. Vlasenko
Central Siberian Botanical Garden SB RAS, st. Zolotodolinskaya
Author for correspondence.
Email: vlasenkomyces@mail.ru
Russian Federation, 101, Novosibirsk, 630090
V. A. Vlasenko
Central Siberian Botanical Garden SB RAS, st. Zolotodolinskaya
Email: anastasiamix81@mail.ru
Russian Federation, 101, Novosibirsk, 630090
References
- Aguilar M., Lado C. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae // The ISME Journal. 2012. V. 6. P. 1506–1514. https://doi.org/10.1038/ismej.2012.12
- Almadrones-Reyes K.J., Dagamac N. H. Predicting local habitat suitability in changing climate scenarios: Applying species distribution modelling for Diderma hemisphaericum // Curr. Res. in Environm. and Appl. Mycol. (J. of Fung. Biol.) 2018. V. 8. № 5. P. 492–500. https://doi.org/10.5943/cream/8/5/2
- Chapman D. S., Purse B. V. Community versus single‐species distribution models for British plants // J. Biogeogr. 2011. V. 38. № 8. P. 1524–1535. https://doi.org/10.1111/j.1365-2699.2011.02517.x
- Czernyadjeva I. V., Afonina O. M., Ageev D. V., Baisheva E. Z., Bulyonkova T. M., Cherenkova N. N., Doroshina G.Ya., Drovnina S. I., Dugarova O. D., Dulepova N. A., Dyachenko A. P., Filippova N. V., Ginzburg E. G., Gogorev R. M., Himelbrant D. E., Ignatov M. S., Kataeva O. A., Kotkova V. M., Kuragina N. S., Kurbatova L. E., Kushnevskaya E. V., Kuzmina E.Yu., Melekhin A. V., Notov A. A., Novozhilov Yu.K., Popov S.Yu., Popova N. N., Potemkin A. D., Stepanchikova I. S., Stepanova V. A., Tubanova D.Ya., Vlasenko A. V., Vlasenko V. A., Voronova O. G., Zhalov Kh.Kh. New cryptogamic records. 4 // Новости систематики низших растений. 2019. Т. 53. Вып. 2. C. 431–479. https://doi.org/10.31111/nsnr/2019.53.2.431
- Dagamac N. H.A., Bauer B., Woyzichovski J., Shchepin O. N., Novozhilov Yu.K., Schnittler M. Where do nivicolous myxomycetes occur? – Modeling the potential worldwide distribution of Physarum albescens // Fung. Ecol. 2021. V. 53. 101079. https://doi.org/10.1016/j.funeco.2021.101079
- Guisan A., Thuiller W. Predicting species distribution: offering more than simple habitat models // Ecol. Lett. 2005. V. 8. № 9. P. 993–1009. https://doi.org/10.1111/j.1461-0248.2007.01044.x
- Guisan A., Zimmermann N. E. Predictive habitat distribution models in ecology // Ecol. Modell. 2000. V. 135. № 2–3. P. 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
- Guo Y., Li X., Zhao Z., Wei H., Gao B., Gu W. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios // Scient. Report. 2017. V. 7. 46221. https://doi.org/10.1038/srep46221
- Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas // Int. J. Climatol. 2005. V. 25. P. 1965–1978. https://doi.org/10.1002/joc.1276
- Hijmans R. J., Guarino L., Mathur P. DIVA-GIS Version 7.5 Manual. 2012. Available from Available from: http://diva-gis.org/docs/DIVA-GIS_manual_7.pdf (accessed 15th of May 2023)
- Limbo-Dizon J.E., Almadrones-Reyes K.J., Macabago S. A.B., Dagamac N. H.A. Bioclimatic modeling for the prediction of the suitable regional geographical distribution of selected bright-spored myxomycetes in the Philippine archipelago // Biodiv. J. Biol. Div. 2022. V. 23. № 5. P. 2285–2294. https://doi.org/10.13057/biodiv/d230506
- Olson D. M., Dinerstein E., Wikramanayake E. D., Burgess N. D., Powell G. V.N., Underwood E. C., D’amico J.A., Itoua I., Strand H. E., Morrison J. C., Loucks C. J., Allnutt T. F., Ricketts T. H., Kura Y., Lamoreux J. F., Wettengel W. W., Hedao P., Kassem K. R. Terrestrial Ecoregions of the World: A New Map of Life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity // BioScience. 2001. V. 51. № 11. P. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
- Phillips S. J., Dudík M. Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation // Ecography. 2008. V. 190. P. 231–259. https://doi.org/10.1111/j.0906-7590.2008.5203.x
- Phillips S. J., Anderson R. P., Schapired R. E. Maximum entropy modeling of species geographic distributions // Ecol. Modell. 2006. V. 190. P. 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Pietras M., Litkowiec M., Gołębiewska J. Current and potential distribution of the ectomycorrhizal fungus Suillus lakei (Murrill) A.H. Sm. et Thiers in its invasion range // Mycorrhiza. 2018. V. 28. P. 467–475. https://doi.org/10.1007/s00572-018-0836-x
- Scheldeman X., Van Zonneveld M. Training manual on spatial analysis of plant diversity and distribution. Rome: Biodiversity International, 2010. P. 1–179. Available from: https://www.bioversityinternational.org/fileadmin/_migrated/uploads/tx_ news/Training_manual_on_spatial_analysis_of_plant_ diversity_and_distribution_1431_07.pdf (доступ 15 мая 2023)
- Segurado P., Araújo M. B. An evaluation of methods for modelling species distributions // J. Biogeogr. 2004. V. 31. P. 1555–1568. https://doi.org/10.1111/j.1365-2699.2004.01076.x
- Yuan H.-Sh., Wei Yu-L., Wang X.-G. MaxEnt modeling for predicting the potential distribution of Sanghuang, an important group of medicinal fungi in China // Fung. Ecol. 2015. V. 17. P. 140–145. https://doi.org/10.1016/j.funeco.2015.06.001
- Vlasenko V. A., Dejidmaa T., Dondov B., Ochirbat E., Kherlenchimeg N., Javkhlan S., Burenbaatar G., Uranchimeg A., Asbaganov S. V., Vlasenko A. V. Distribution and ecological niche modeling of a rare species Poronia punctata in Asia // Curr. Res. in Environm. and Appl. Mycol. (J. of Fung. Biol.). 2021. V. 11. № 1. P. 468–484. https://doi.org/10.5943/cream/11/1/32
- Vlasenko A. V., Novozhilov Yu.K., Vlasenko V. A., Korolyuk A.Yu., Dulepova N. A. New data on the obligate coprophilous myxomycetes of Siberia // The Bulletin of Irkutsk State University. Series: Biology and Ecology. 2017. V. 21. P. 50–60.
- Zurell D., Franklin J., König C., Bouchet P. J., Dormann C. F., Elith J., Fandos G., Feng X., Guillera‐Arroita G., Guisan A., Lahoz‐Monfort J.J., Leitão P. J., Park D. S., Townsend Peterson A., Rapacciuolo G., Schmatz D. R., Schröder B., Serra‐Diaz J.M., Thuiller W., Yates K. L., Zimmermann N. E., Merow C. A standard protocol for reporting species distribution models // Ecography. A journal of space and time in ecology. 2020. V. 43. № 9. P. 1261–1277. https://doi.org/10.1111/ecog.04960
Supplementary files
