Heavy metals-resistant PGPR strains of Pseudomonas sp. stimulating the growth of alfalfa under cadmium stress
- Autores: Chubukova O.V.1, Khakimova L.R.1, Matnyazov R.T.1, Vershinina Z.R.1,2
-
Afiliações:
- Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Federal State Budgetary Educational Institution of Higher Education “Ufa State Petroleum Technological University”
- Edição: Nº 5 (2024)
- Páginas: 585–595
- Seção: МИКРОБИОЛОГИЯ
- URL: https://journals.rcsi.science/1026-3470/article/view/274163
- DOI: https://doi.org/10.31857/S1026347024050037
- EDN: https://elibrary.ru/ulutlw
- ID: 274163
Citar
Texto integral
Resumo
Three bacteria strains of Pseudomonas sp. resistant to heavy metals were isolated from the chemically contaminated soil. According to the results on the nucleotide sequences of the 16S rRNA and rpoD genes, strain Pseudomonas sp. 17 НМ was identified as Pseudomonas capeferrum, and the strains of Pseudomonas sp. 65 НМ и 67 НМ were most closely related to the type strain of Pseudomonas silesiensis и Pseudomonas umsongensis, respectively. It has been shown that strains of Pseudomonas sp. 17 НМ, 65 НМ, 67 НМ are characterized by different levels of resistance of heavy metals: maximum tolerance concentration (MTC) of zinc was 1 mМ for all strains, cadmium 1, 1.5, 1 mМ, lead 5, 5, 4 mМ, nickel 7, 9, 7 mМ, respectively. All pseudomonad strains can form biofilms and have the properties of PGPR bacteria. Treatment of alfalfa seeds (Medicago sativa L.) with strains Pseudomonas sp. 17 НМ, 65 НМ, 67 НМ under cadmium stress led to an increase in the dry weight of alfalfa seedling up to 40 % and the content of chlorophyll a and b in the leaves by 25-33% relative to the control.
Palavras-chave
Texto integral

Sobre autores
O. Chubukova
Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: chubukova@bk.ru
Rússia, st. Prospect Oktyabrya, 71, Ufa, 450054
L. Khakimova
Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: chubukova@bk.ru
Rússia, st. Prospect Oktyabrya, 71, Ufa, 450054
R. Matnyazov
Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
Email: chubukova@bk.ru
Rússia, st. Prospect Oktyabrya, 71, Ufa, 450054
Z. Vershinina
Institute of Biochemistry and Genetics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal State Budgetary Educational Institution of Higher Education “Ufa State Petroleum Technological University”
Email: chubukova@bk.ru
Rússia, st. Prospect Oktyabrya, 71, Ufa, 450054; st. Kosmonavtov, 1, Ufa, 450000
Bibliografia
- Баймиев Ан.Х., Ямиданов Р. С., Матниязов Р. Т., Благова Д. К., Баймиев Ал.Х., Чемерис А. В. Получение флуоресцентно меченных штаммов клубеньковых бактерий дикорастущих бобовых для их детекции in vivo и in vitro // Мол. биология. 2011. № 6. С. 984–991.
- Хакимова Л. Р., Чубукова О. В., Мурясова А. Р., Симороз Е. В., Чумакова А. К., Вершинина З. Р. Влияние Pseudomonas spp. на растения люцерны Medicago sativa при ингибирующем действии солей кадмия // Таврический вестник аграрной науки. 2022. № 2. С. 155–163.
- Чубукова О. В., Хакимова Л. Р., Акимова Е. С., Вершинина З. Р. Филогения и свойства новых штаммов Pseudomonas sp. из ризосферы бобовых растений Южного Урала //Микробиология. 2022. № 5. С. 537–546.
- Akinbowale O. L., Peng H., Grant P., Barton M. D. Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia // Int. J. Antimicrob. Agents. 2007. V. 30. P. 177–182. https://doi.org/10.1016/j.ijantimicag.2007.03.012
- Berendsen R. L., van Verk M. C., Stringlis I. A., Zamioudis C., Tommassen J., Pieterse C. M., Bakker P. A. Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417 // BMC Genomics. 2015. V. 16. P. 539. https://doi.org/10.1186/s12864-015-1632-z.
- Chen B., Luo S., Wu Y., Ye J., Wang Q., Xu X., Pan F., Khan K. Y., Feng Y., Yang X. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance // Front Microbiol. 2017. V. 8. P. 2538. https://doi.org/10.3389/fmicb.2017.02538
- Choudhury S., Chatterjee A. Microbial application in remediation of heavy metals: an overview // Arch. Microbiol. 2022. V. 204. P. 268. https://doi.org/10.1007/s00203-022-02874-1
- Desoky E. S.M., Merwad A. R. M., Semida W. M., Ibrahim S. A., El-Saadony M. T., Rady M. M. Heavy metals-resistant bacteria (HM-RB): Potential bioremediators of heavy metals-stressed Spinacia oleracea plant //Ecotoxicol. Environ. Saf. // 2020. V. 198. P. 110685. https://doi.org/10.1016/j.ecoenv.2020.110685
- Ghnaya T., Mnassri M., Ghabriche R., Wali M., Poschenrieder C., Lutts S, Abdelly C. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. // Front. Plant 2015. V. 6. P. 863. https://doi: 10.3389/fpls.2015.0086
- Girard L., Lood C., Rokni-Zadh H., van Noort V., Lavigne R., De Mot R. Reliable identification of environmental Pseudomonas isolates using the rpoD gene // Microorganisms. 2020. V. 8. P. 1166. https://doi.org/10.3390/microorganisms8081166
- Gu Y., Ma Y. N., Wang J., Xia Z., Wei H. L. Genomic insights into a plant growth-promoting Pseudomonas koreensis strain with cyclic lipopeptide-mediated antifungal activity // Microbiology. 2020. V. 9. e1092. https://doi.org/10.1002/mbo3.1092
- Jócsák I., Knolmajer B., Szarvas M., Rabnecz G., Pál-Fám F. Literature review on the effects of heavy metal stress and alleviating possibilities through exogenously applied agents in Alfalfa (Medicago sativa L.) // Plants (Basel). 2022. V.11. P. 2161. https://doi.org/10.3390/plants11162161
- Khakimova L., Chubukova O., Vershinina Z., Maslennikova D. Effects of Pseudomonas sp. OBA 2.4.1 on growth and tolerance to cadmium stress in Pisum sativum L. // BioTech (Basel). 2023. V. 12. P. 5. https://doi: 10.3390/biotech12010005.
- Kaminski M. A., Furmanczyk E. M., Sobczak A., Dziembowski A., Lipinski L. Pseudomonas silesiensis sp. nov. strain A3T isolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence // Syst. Appl. Microbiol. 2018. V. 41. P. 13–22. https://doi.org/10.1016/j.syapm.2017.09.002
- Khanna K., Jamwal V. L., Gandhi S. G., Ohri P., Bhardwaj R. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity // Scientific reports. 2019. V. 9. 5855. https://doi.org/10.1038/s41598-019-41899-3
- Lalucat J., Mulet M., Gomila M., García-Valdés E. Genomics in bacterial taxonomy: impact on the genus Pseudomonas // Genes (Basel). 2020. V. 11. P. 139. https://doi.org/10.3390/genes11020139
- Li D., Xu X., Yu H., Han X. Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China // J. Environ. Manage. 2017. V. 196. P. 8–15. https://doi: 10.1016/j.jenvman.2017.02.076
- Maslennikova D., Nasyrova K., Chubukova O., Akimova E., Baymiev A., Blagova D., Ibragimov A., Lastochkina O. Effects of Rhizobium leguminosarum Thy2 on the growth and tolerance to cadmium stress of wheat plants // Life (Basel). 2022. V. 12. P. 1675. https://doi.org/10.3390/life12101675
- Mtengai K., Ramasamy S., Msimuko P., Mzula A., Mwega E. D. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area // Environ. Monit. Assess. 2022. V. 194. P. 887. https://doi: 10.1007/s10661-022-10565-z
- Mulet M., Bennasar A., Lalucat J., Garcia-Valdes E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples // Mol. Cell Probes. 2009. V. 23. P. 140–147. https://doi.org/10.1016/j.mcp.2009.02.001
- Mulet M., Lalucat J., García-Valdés E. DNA sequence-based analysis of the Pseudomonas species // Environ. Microbiol. 2010. V. 12. P. 1513–1530. https://doi.org/10.1111/j.1462-2920.2010.02181.x
- Manzoor M., Abid R., Rathinasabapathi B., De Oliveira L. M., da Silva E., Deng F., Rensing C., Arshad M., Gul I., Xian P, Ma L. Q. Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil // Sci Total Environ. 2019. V. 660. P. 18–24. https://doi: 10.1016/j.scitotenv.2019.01.013
- Narancic T., Salvador, M., Hughes, G. M., Beagan, N., Abdulmutalib, U., Kenny, S. T., Jimenez, J. I. Genome analysis of the metabolically versatile Pseudomonas umsongensis GO16: the genetic basis for PET monomer upcycling into polyhydroxyalkanoates // Microb. Biotechnol. 2021. V. 14. P. 2463–2480. https://doi.org/10.1111/1751-7915.13712
- Pande V., Pandey S. C., Sati D., Bhatt P., Samant M. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem // Front. Microbiol. 2022. V. 6. P. 824084. https://doi.org/10.3389/fmicb.2022.824084
- Patel J. S., Patel P. C., Kalia K. Isolation and characterization of nickel uptake by nickel resistant bacterial isolate (NiRBI) // Biomed. Environ. Sci. 2006. V. 19 P. 297–301.
- Raklami A., Meddich A., Oufdou K., Baslam M. Plants-microorganisms-based bioremediation for heavy metal cleanup: recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses // Int. J. Mol. Sci. 2022. V. 23. P. 5031. https://doi.org/10.3390/ijms23095031
- Saif S., Khan M. S. Assessment of heavy metals toxicity on plant growth promoting rhizobacteria and seedling characteristics of Pseudomonas putida SFB3 inoculated greengram // Acta Scientific Agriculture. 2017. V. 1. P. 47-56.
- Singh P., Singh R. K., Zhou Y., Wang J., Jiang Y., Shen N., Jiang M. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review // J. Plant Interac. 2022. V. 17. P. 220–238. https://doi.org/10.1080/17429145.2022.2029963
- Sambrook J., Fritsch E., Maniatis T. Molecular Cloning: a Laboratory Manual. N.Y.: Cold Spring Harbor Lab. Press, 1989. 1626 p.
- Wang Y., Narayanan M., Shi X., Chen X., Li Z., Natarajan D., Ma Y. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms // Front. Microbiol. 2022. V. 13. P. 966226. https://doi: 10.3389/fmicb.2022.966226
Arquivos suplementares
