The role of biodiversity in the functioning of ecosystems. Message1. General principles of ecosystems monitoring

Cover Page

Cite item

Full Text

Abstract

Ecosystem change is the everyday reality and assessment of its ability to provide men with ecosystem products and services (fresh water, climate, soil fertility, etc.), whch are nesessory for humans’ welfare is an urgent applied issue. The question “if changes in the loss of biological diversity affect the functioning of local ecosystems” is attracting increasing attention. In the first communication, we consider modern approaches to ecosystem monitoring. The concept of historical and novel ecosystems, ecosystem resilience, threshold effects, theory-driven restoration, and social-ecological considerations are reviewed. The principles of indication, requirements for indicators, possibilities and perspectives for the use of small mammals as indicators of the dynamics of local ecosystems are considered.

Full Text

Restricted Access

About the authors

N. A. Shchipanov

A. N. Severtsov Institute of Ecology and Evolution

Author for correspondence.
Email: shchipa@mail.ru
Russian Federation, 119071, Moscow, Leninsky Prospekt, 33

A. A. Kalinin

A. N. Severtsov Institute of Ecology and Evolution

Email: shchipa@mail.ru
Russian Federation, 119071, Moscow, Leninsky Prospekt, 33

References

  1. Башенина Н. В. Пути адаптации мышевидных грызунов. М.: Наука, 1977. 355 с.
  2. Зайцев М. В. Эколого-морфологические особенности функционирования жевательного аппарата землероек // Эволюционные факторы формирования разнообразия животного мира. М.: КМК, 2005. С. 135–145.
  3. Кряжимский Ф. В. Участки обитания животных и регуляция энергетического баланса // Экология. 1992. № 4. С. 55–66.
  4. Кряжимский Ф. В., Большаков В. Н. Функционально-экологическая роль биологического разнообразия в популяциях и сообществах // Экология. 2008. № 6. С. 403–410.
  5. Литвинов Ю. Н. Сообщества и популяции мелких млекопитающих в экосистемах Сибири. Новосибирск: ЦЭРИС, 2001. 128 с.
  6. Маркова А. К., ван Кольфсхотен Т., Бохнкке Ш., Косинцев П. А., Мол И., Пузаченко А. Ю., Симакова А. Н., Смирнов Н. Г., Верпоорте А., Головачев И. Б. Эволюция экосистем Европы при переходе от плейстоцена к голоцену (24–8 тыс. л. н.). Москва: КМК, 2008. 556 с.
  7. Шилова С. А. Популяционная экология как основа контроля численности мелких млекопитающих. М.: Наука, 1993. 201 с.
  8. Barnes A. D., Weigelt P., Jochum M., Ott D., Hodapp D., Haneda N. F., Brose U. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems // Philos. Trans. R. Soc. B: Biol. Sci. 2016. V. 371. № 1694. P. 20150279. https://doi.org/10.1098/rstb.2015.0279
  9. Barrett G. W., Peles J. D. Small mammal ecology: a landscape perspective // Landscape ecology of small mammals / Eds Barrett G. W., Peles J. D. N.Y.: Springer, 1999. P. 1–8.
  10. Berlinches de Gea A., Hautier Y., Geisen S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning // Glob. Change Biol. 2023. V. 29. № 2. P. 296–307. doi: 10.1111/gcb.16471
  11. Bourliére F. Mammals, small and large: the ecological implications of size // Small mammals: their productivity and population dynamics / Eds Golley F. B., Petrusewicz K., Ryszkowski L. N.Y.: Cambridge University Press, 1975. P. 1–8
  12. Buckley R. Ecological indicators of tourist impacts in parks // J. of Ecotourism. 2003. V. 2. № 1. P. 54–66. https://doi.org/10.1080/14724040308668133
  13. Cardinale B. J., Duffy J. E., Gonzalez A., Hooper D. U., Perrings C., Venail P., Narwani A., Mace G. M., Tilman D., Wardle D. A., Kinzig A. P., Daily G. C., Loreau M., Grace J. B., Larigauderie A., Srivastava D. Naeem S. Biodiversity loss and its impact on humanity // Nature. 2012. V. 486. № 7401. P. 59–67. doi: 10.1038/nature11148
  14. Carignan V, Villard M. Selecting indicator species to monitor ecological integrity: a review // Environ. Monitoring and Assessment. 2002. V. 78. № 1. P. 45–61. doi: 10.1023/A:1016136723584
  15. Carpenter S.R, Brock W. A. Rising variance: a leading indicator of ecological transition // Ecol. Lett. 2006. V. 9. P. 311–318. doi: 10.1111/j.1461-0248.2005.00877.x
  16. Carpenter S.R, Folke C. Ecology for transformation // Trends Ecol. Evol. 2006. V. 21. P. 309–315. doi: 10.1016/j.tree.2006.02.007
  17. de Bello F., Lavorel S., Dı´az S., Harrington R., Bardgett R. D., Berg M. P., Cipriotti P., Cornelissen J. H.C., Feld C. K., Hering D., Martins da Silva P., Potts S. G., Sandin L., Sousa J. P., Storkey J., Wardle D. A., Harrison P. A. Towards an assessment of multiple ecosystem processes and services via functional traits // Biodivers. Conserv. 2010. V. 19. P. 2873–2893. doi: 10.1007/s10531-010-9850-9
  18. Devoto M., Bailey S., Craze P., Memmott J. Understanding and planning ecological restoration of plant–pollinator networks // Ecol. Lett. 2012. V. 15. № 4. P. 319–328. doi: 10.1111/j.1461-0248.2012.01740.x
  19. Díaz S., Fargione J., Chapin III F.S., Tilman D. Biodiversity loss threatens human well-being // PLoS biol. 2006. V. 4. № 8. P. e277 doi.org/10.1371
  20. Egwumah F. A., Egwumah P. O. Edet D. I. Paramount roles of wild birds as bioindicators of contamination // J. Avian & Wildlife Biol. 2017. V. 2. № 1. P. 194‒200. doi: 10.15406/ijawb.2017.02.00041
  21. Falk D. A. Restoration ecology, resilience, and the axes of change1 // Ann. Missouri Bot. Gard. 2017. V. 102. № 2. P. 201–216. doi: 10.3417/2017006
  22. Falk D. A., van Mantgem P. J., Keeley J. E., Gregg R. M., Guiterman C. H., Tepley A. J., Young D. J.N., Marshall L. A. Mechanisms of forest resilience // For. Ecol. Manag. 2022. V. 512. P. 120–129. https://doi.org/10.1016/j.foreco.2022.120129
  23. Falk D. A., Watts A. C., Thode A. E. Scaling ecological resilience // Front. Ecol. Evol. 2019. P. 275. https://doi.org/10.3389/fevo.2019.00275
  24. Fleming T. H. Life-history strategies // Ecology of small mammals / Ed. Stoddart. Dordrecht: Springer Netherlands, 1979. P. 1–61.
  25. Folke C., Carpenter S., Walker B., Scheffer M., Elmqvist T., Gunderson L., Holling C. S. Regime shifts, resilience, and biodiversity in ecosystem management // Annu. Rev. Ecol. Evol. Syst. 2004. V. 35. P. 557–581. doi: 10.1146/annurev.ecolsys.35.021103.105711
  26. Gao T., Nielsen A. B., Hedblom M. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe // Ecol. Ind. 2015. V. 57. P. 420–434. https://doi.org/10.1016/j.ecolind.2015.05.028
  27. Gravel D., Albouy C., Thuiller W. The meaning of functional trait composition of food webs for ecosystem functioning // Philos. Trans. R. Soc. B: Biol. Sci. 2016. V. 371. № 1694. P. 20150268. doi.org/10.1098/rstb.2015.0268
  28. Gross N., Bagousse-Pinguet Y.L., Liancourt P., Berdugo M., Gotelli N. J., Maestre F. T. Functional trait diversity maximizes ecosystem multifunctionality // Nat. Ecol. Evol. 2017. V. 1. № 5. P. 0132. doi: 10.1038/s41559-017-0132
  29. Hautier Y., Tilman D., Isbell F., Seabloom E. W., Borer E. T. Reich P. B. Anthropogenic environmental changes affect ecosystem stability via biodiversity// Science. 2015. V. 348. P. 336–340. doi: 10.1126/science.aaa1788
  30. Hayward G. F., Phillipson J. Community structure and functional role of small mammals in ecosystems // Ecology of small mammals / Eds Stoddart D. M. London: Chapmen and Hall, 1979. P. 135–211.
  31. Hilmers T., Friess N., Bässler C., Heurich M., Brandl R., Pretzsch H., Müller J. Biodiversity along temperate forest succession // J. App. Ecol. 2018. V. 55. № 6. P. 2756–2766. doi: 10.1111/1365-2664.13238
  32. Hobbs R. J., Higgs E., Hall C. M., Bridgewater P., Chapin III F.S., Ellis E. C., Ewe J. J., Hallett L. M., Harris J., Hulvey K. B., Jackson S. T., Kennedy P. L., Kueffer C., Lach L., Lantz T. C., Lugo A. E., Mascaro J., Murphy S. D., Nelson C. R., Perring M. P., Richardson D. M., Seastedt T. R., Standish R. J., Starzomski B. M., Suding K. N., Tognetti P. M., Yakob L., Yung L. Managing the whole landscape: historical, hybrid, and novel ecosystems // Front. Ecol. Environ. 2014 a. V. 12. № 10. P. 557–564. doi: 10.1890/130300
  33. Hobbs R. J., Higgs E. S., Hall C. (eds.). Novel ecosystems: intervening in the new ecological world order. Oxford, UK: Wiley-Blackwell, 2013. 368 p.
  34. Hobbs R. J., Higgs E. S., Harris J. A. Novel ecosystems: concept or inconvenient reality? A response to Murcia et al // Trends Ecol. Evol. 2014 b. V. 29. № 12. P. 645–646. https://doi.org/10.1016/j.tree.2014.09.006
  35. Hobbs R. J., Higgs E. S., Harris J. A. Novel ecosystems: implications for conservation and restoration // Trends Ecol. Evol. 2009. V. 24. № 11. P. 599–605. doi: 10.1016/j.tree.2009.05.012 A
  36. Hooper D. U., Chapin III F.S., Ewel J. J., Hector A., Inchausti P., Lavorel S., Lawton J. H., Lodge D. M., Loreau M., Naeem S., Schmid B., Setälä H., Symstad A. J., Vandermeer J., Wardle D. A. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge // Ecol. Monogr. 2005. V. 75. № 1. P. 3–35. https://doi.org/10.1890/04-0922
  37. Isbell F., Craven D., Connolly J., Loreau M., Schmid B., Beierkuhnlein C., Pascal A. N., Eisenhauer N. Biodiversity increases the resistance of ecosystem productivity to climate extremes // Nature. 2015 a. V. 526. P. 574–577. https://doi.org/10.1038/nature15374
  38. Isbell F., Tilman D., Polasky S., Loreau M. The biodiversity dependent ecosystem service debt // Ecol. Lett. 2015 b. V. 18. P. 119–134. doi: 10.1111/ele.12393
  39. Jackson S. T., Hobbs R. J. Ecological restoration in the light of ecological history // Science. 2009. V. 325. № 5940. P. 567–569. doi: 10.1126/science.1172977
  40. Jucker T., Bouriaud O., Avacaritei D., Coomes D. A. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes // Ecol. Lett. 2014. V. 17. P. 1560–1569. https://doi.org/10.1111/ele.12382
  41. Kelly J. R., Harwell M. A. Indicators of ecosystem recovery // Environ. Manage. 1990. V. 14. P. 527–545.
  42. Kueffer C., Kaiser-Bunbury C. N. Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene // Front. Ecol. Environ. 2014. V. 12. № 2. P. 131–137. doi: 10.1890/120201
  43. Lavorel S., Garnier É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail // Functional ecology. 2002. V. 16. № 5. P. 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664
  44. Liu J., Dietz T., Carpenter S. R., Alberti M., Folke C., Moran E., Pell A. N., Deadman P., Kratz T., Lubchenco J., Ostrom E., Ouyang Z., Provencher W., Redman C. L., Schneider S. H., Taylor W. W. Complexity of coupled human and natural systems // Science. 2007. V. 317. № 5844. P. 1513–1516. doi: 10.1126/science.1144004
  45. Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J. P., Hector A., Hooper D. U., Huston M. A., Raffaelli D., Schmid B., Tilman D. Wardle D. A. Biodiversity and ecosystem functioning: current knowledge and future challenges // Science. 2001. V. 294. № 5543. P. 804–808. doi: 10.1126/science.1064088
  46. McCann K. Protecting biostructure // Nature. 2007. V.446, 29.
  47. McNab B. K. Bioenergetics and the determination of home range size // The Am. Nat. 1963. V. 97. № 894. P. 133–140.
  48. Merritt J. F. The biology of small mammals. JHU Press, 2010. 313 p.
  49. Mlambo M. C. Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research // Biodivers. Conserv. 2014. V. 23. P. 781–790. doi: 10.1007/s10531-014-0618-5
  50. Mori A. S. Kitagawa R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: a global meta-analysis // Biol. Conserv. 2014. V. 175. P. 65–73. https://doi.org/10.1016/j.biocon.2014.04.016
  51. Mori A. S., Furukawa T., Sasaki T. Response diversity determines the resilience of ecosystems to environmental change // Biol. Rev. 2013. V. 88. № 2. P. 349–364. doi: 10.1111/brv.12004
  52. Mori A. S., Lertzman K. P., Gustafsson L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology // J. App. Ecol. 2017. V. 54. № 1. P. 12–27. doi: 10.1111/1365-2664.12669
  53. Mori A. S., Shiono T., Haraguchi T. F., Ota A. T., Koide D., Ohgue T., Kitagawa R., Maeshiro R., Aung T. T., Nakamori T., Hagiwara Y., Matsuoka S., Ikeda A., Hishi T., Hobara S., Mizumachi E., Frisch A., Thor G., Fujii S., Osono T., Gustafsson L. Functional redundancy of multiple forest taxa along an elevational gradient: predicting the consequences of non-random species loss // J. Biogeogr. 2015. V. 42. P. 1383–1396. https://doi.org/10.1111/jbi.12514
  54. Morin X., Fahse L., de Mazancourt C., Scherer-Lorenzen M. Bugmann H. Temporal stability in forest productivity increases with tree diversity due to asynchrony in species dynamics // Ecol. Lett. 2014. V. 17. P. 1526–1535. doi: 10.1111/ele.12357
  55. Mouillot D., Villéger S., Scherer-Lorenzen M., Mason N. W. Functional structure of biological communities predicts ecosystem multifunctionality // PloS one. 2011. V. 6. № 3. P. e17476. https://doi.org/10.1371/journal.pone.0017476
  56. Murcia C., Aronson J., Kattan G. H., Moreno-Mateos D., Dixon K., Simberloff D. A critique of the ‘novel ecosystem’concept // Trends Ecol. Evol. 2014. V. 29. № 10. P. 548–553. https://doi.org/10.1016/j.tree.2014.07.006
  57. Overmars K. P., Schulp C. J., Alkemade R., Verburg P. H., Temme A. J., Omtzigt N., Schaminée J. H. Developing a methodology for a species-based and spatially explicit indicator for biodiversity on agricultural land in the EU // Ecol. Indicat. 2014. V. 37. P. 186–198. https://doi.org/10.1016/j.ecolind.2012.11.006
  58. Paniccia C., Carranza M. L., Frate L., Di Febbraro M., Rocchini D., Loy A. Distribution and functional traits of small mammals across the Mediterranean area: landscape composition and structure definitively matter // Ecol. Indicat. 2022. V. 135. P. 108–550. https://doi.org/10.1016/j.ecolind.2022.108550
  59. Pearce J., Venier L. Small mammals as bioindicators of sustainable boreal forest management // For. Ecol. Manag. 2005. V. 208. № 1–3. P. 153–175. https://doi.org/10.1016/j.foreco.2004.11.024
  60. Petchey O. L., Gaston K. J. Functional diversity: back to basics and looking forward // Ecol. Lett. 2006. V. 9. № 6. P. 741–758. doi: 10.1111/j.1461-0248.2006.00924.x
  61. Reiss J., Bridle J. R., Montoya J. M., Woodward G. Emerging horizons in biodiversity and ecosystem functioning research // Trends Ecol. Evol. 2009. V. 24. P. 505–514. doi: 10.1016/j.tree.2009.03.018
  62. Sekercioglu C. H. Ecosystem functions and services //Conservation biology for all. 2010. P. 45–72.
  63. Shchipanov N. A. Population resilience of small mammals. Why it is important and what it depends // Povolzh. J. Ecol. 2019. № 4. P. 503–523. https://doi.org/10.35885/1684-7318-2019-4-503-523
  64. Sieg C. H. Small mammals: pests or vital components of the ecosystem // Great plains wildlife damage control workshop proceedings. 1987. V. 9 7., P. 88–92.
  65. Simberloff D. Flagships, umbrellas, and keystones: is single-species manage-ment passe in the landscape era? // Biol. Conserv. 1997. V. 83. № 3. P. 247–257. https://doi.org/10.1016/S0006-3207(97)00081-5
  66. Singleton G. R., Leirs H., Hinds L. A., Zhang Z. Ecologically-based management of rodent pests–re-evaluating our approach to an old problem // Ecologically-based Management of Rodent Pests. Australian Centre for International Agricultural Research (ACIAR). Canberra. 1999. V. 31. P. 17–29.
  67. Steele B. B., Bayn Jr R. L., Grant C. V. Environmental monitoring using populations of birds and small mammals: analyses of sampling effort // Biol. Conserv. 1984. V. 30. № 2. P. 157–172. https://doi.org/10.1016/0006-3207(84)90064-8
  68. Suárez-Castro A.F., Raymundo M., Bimler M., Mayfield M. M. Using multi‐scale spatially explicit frameworks to understand the relationship between functional diversity and species richness // Ecography. 2022. № 6. P. e05844. https://doi.org/10.1111/ecog.05844
  69. Tchabovsky A. V., Savinetskaya L. E., Surkova E. N., Ovchinnikova N. L., Kshnyasev I. A. Delayed threshold response of a rodent population to human-induced landscape change // Oecologia. 2016. V. 182. P. 1075–1082. https://doi.org/10.1007/s00442-016-3736-9
  70. Tilman D., Isbell F., Cowles J. M. Biodiversity and ecosystem functioning // Annu. Rev. Ecol. Evol. Syst. 2014. V. 45. P. 471–493. https://doi.org/10.1146/annurev-ecolsys-120213-091917
  71. Tittensor D. P., Walpole M., Hill S. L., Boyce D. G., Britten G. L., Burgess N. D., Butchart S. H.M., Leadley P. W., Regan E. C., Alkemade R., Baumung R., Bellard C., Bouwman L., Bowles-Newark N.J., Chenery A. M., Cheung W. W.L., Christensen V., Cooper H. D., Crowther A. R., Dixon M. J.R., Galli A., Gaveau V., Gregory R. D., Gutierrez N. L., Hirsch T. L., Höft R., Januchowski-Hartley S.R., Karmann M., Krug C. B., Leverington F. J., Loh J., Lojenga R. K., Malsch K., Marques A., Morgan D. H.W., Mumby P. J., Newbold T., Noonan-Mooney K., Pagad S. N., Parks B. C., Pereira H. M., Robertson T., Rondinini C., Santini L., Scharlemann J. P.W., Schindler S., Sumaila U. R., Teh L. S.L., van Kolck J., Visconti P., Ye Y. A mid-term analysis of progress toward international biodiversity targets // Science. 2014. V. 346. № 6206. P. 241–244. doi: 10.1126/science.1257484
  72. Torre I., Freixas L., Arrizabalaga A., Díaz M. The efficiency of two widely used commercial live-traps to develop monitoring protocols for small mammal biodiversity // Ecol. Indicat. 2016. V. 66. P. 481–487. https://doi.org/10.1016/j.ecolind.2016.02.017
  73. Torre I., Ribas A., Puig-Gironès R. Effects of Post-Fire Management on a Mediterranean Small Mammal Community // Fire. 2023. V. 6. № 1. P. 34. https://doi.org/10.3390/fire6010034
  74. Valencia E., Maestre F. T., Le Bagousse-Pinguet Y., Quero J. L., Tamme R., Börger L., Garcıa-Gomez M., Gross N. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands // New Phytologist. 2015. V. 206. № 2. P. 660–671. https://doi.org/10.1111/nph.13268
  75. VanBuren C.S., Jarzyna M. A. Trends in functional composition of small mammal communities across millennial time scales // Ecography. 2022. № 7. P. e06096. https://doi.org/10.1111/ecog.06096
  76. Vandewalle M., De Bello F., Berg M. P., Bolger T., Dolédec S., Dubs F., Feld C. K., Harrington R., Harrison P. A., Lavorel S., da Silva P. M., Moretti M., Niemelä J., Santos P., Sattler T., Sousa J. P., Sykes M. T., Vanbergen A. J., Woodcock B. A. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms // Biol. Conserv. 2010. V. 19. № 10. P. 2921–2947. https://doi.org/10.1007/s10531-010-9798-9
  77. Violle C., Navas M. L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. Let the concept of trait be functional! // Oikos. 2007 V. 116. P. 882–892
  78. Vitousek P. M., Mooney H. A., Lubchenco J.., Melillo J M. Human domination of Earth’s ecosystems // Science. 1997. V. 277. № 5325. P. 494–499. doi: 10.1126/science.277.5325.494
  79. Walker B., Holling C. S., Carpenter S. R., Kinzig A. Resilience, adaptability and transformability in social–ecological systems // Ecol. Societ. 2004. V. 9. № 2.
  80. http://www.jstor.org/stable/26267673
  81. Weiss K. C., Ray C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides // Ecography. 2019. V. 42. № 12. P. 2012–2020. https://doi.org/10.1111/ecog.04387
  82. Wilman H., Belmaker J., Simpson J., de la Rosa C., Rivadeneira M. M., Jetz W. EltonTraits 1.0: Species‐level foraging attributes of the world’s birds and mammals: Ecological Archives E095–178 // Ecology. 2014. V. 95. № 7. P. 2027–2027. https://doi.org/10.1890/13-1917.1
  83. Wright J.P, Naeem S., Hector A., Lehman C., Reich P. B., Schmid B., Tilman D. Conventional functional classification schemes underestimate the relationship with ecosystem functioning // Ecol. Lett. 2006. V. 9. P. 111–120. https://doi.org/10.1111/j.1461-0248.2005.00850.x
  84. Wu D., Xu C., Wang S., Zhang L., Kortsch S. Why are biodiversity – ecosystem functioning relationships so elusive? Trophic interactions may amplify ecosystem function variability // J. Anim. Ecol. 2023. V. 92. № 2. P. 367–376. https://doi.org/10.1111/1365-2656.13808

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Conceptual diagram of the relationship between biodiversity and social impacts (after Mori et al., 2017 with modifications). Blue arrows are “material” and yellow arrows are informational links. Green arrow – positive, red – negative impacts of society on biodiversity, dotted line – impact expected from management, arrow thickness – impact strength. Functional block – on green, analytical – on light blue background.

Download (302KB)
3. Fig. 2. Change in the position of the ecosystem attractor with changes in biodiversity. The entire set of species included in the ecosystem (colored arrows), i.e. its biodiversity, affect the “plane” of the environment, resulting in a landscape with larger or smaller depressions. These are stable states of the ecosystem or attractors (green ball). Minor fluctuations in the environment allow the attractor to remain in one place for a long time. After anthropogenic impact (red arrow), if it has overcome individual resistance, the attractor of the system (ball) receives an impulse and tries to jump out of the hole – a. If the anthropogenic impact was strong enough to cause a change in the “landscape” (functional diversity), the ball can jump out of the hole, overcome the “threshold” or “breaking point” (the convexity of the “landscape”), and if the ball overcomes it, the system enters a new state – b, or completely leave the system – c. The magnitude of the received impulse can be estimated by the force of the ball's swing (thin red arrows in Fig. a).

Download (79KB)
4. Fig. 3. Biodiversity assessments. Species richness is assessed as the number of species 1–9, without taking into account their quantitative assessment. The biodiversity of the system (a) is assessed taking into account the ratio of species abundance in the sample, usually using the Shannon index – H, Pielou index – E and, less often, the Simpson index – D, comparison of samples is carried out using the Sørensen similarity index – S, and/or, taking into account the quantitative ratio, the Bray-Curtis dissimilarity index – BC. Based on various functional traits of individuals, it is possible to assess the functional diversity of the system (b), while the functional traits of an individual are not necessarily related to the resource flow, which can lead to distortions in the assessment of ecosystem functions (Wu et al., 2023). Knowing the biomass of a species per unit area, it is possible to calculate the diversity of resource flows in trophic groups x, y, z (c). The ratio of the power of resource flows in species with different trophic strategies characterizes the functional diversity of the ecosystem (g) and its fundamental functional structure (d).

Download (335KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies