Composition of fatty acids, phytosterols and total content of antioxidants of Morus L. seeds

Cover Page

Cite item

Full Text

Abstract

This paper presents for the first time the results of studying the total content of antioxidants in the seeds of Morus L. The composition of fatty and steric acids of the seeds of mulberry fruits Morus L. was also studied: polymorphic species Morus alba (white-fruited, pink-fruited, black-fruited) and Morus nigra (Khartut variety). As a result of the studies, 12 fatty acids were identified. The main ones were linoleic acid, palmitic oleic acid, and stearic acid. The predominant fatty acid in all samples was linoleic, which varied from 67.5 to 79.0%. 15 sterols were found, among which β-Sitosterol accounts for about 90%. Determination of the total antioxidant content of Morus alba seeds (white-fruited, pink-fruited, black-fruited forms) and Morus nigra (Khartut variety) revealed the accumulation of antioxidants in all samples. The highest total content of antioxidants was observed in Morus nigra (4.40 mg/g) and the white-fruited form of Morus alba (5.56 mg/g).

Full Text

Restricted Access

About the authors

F. I. Islamova

Mountain Botanical Garden, Dagestan Research Center, Russian Academy of Sciences

Email: chemfarm@mail.ru
Russian Federation, 75 M. Yaragsky, Makhachkala, 367000

G. K. Radzhabov

Mountain Botanical Garden, Dagestan Research Center, Russian Academy of Sciences

Email: chemfarm@mail.ru
Russian Federation, 75 M. Yaragsky, Makhachkala, 367000

S. V. Goriainov

Peoples’ Friendship University of Russia

Email: chemfarm@mail.ru
Russian Federation, 6 Miklukho-Maclay, Moscow, 117198

F. Hajjar

Peoples’ Friendship University of Russia

Email: chemfarm@mail.ru
Russian Federation, 6 Miklukho-Maclay, Moscow, 117198

A. M. Aliev

Mountain Botanical Garden, Dagestan Research Center, Russian Academy of Sciences

Author for correspondence.
Email: chemfarm@mail.ru
Russian Federation, 75 M. Yaragsky, Makhachkala, 367000

References

  1. Исламова Ф.И., Мусаев А.М., Раджабов Г.К. Структура изменчивости некоторых пряно-ароматических растений по содержанию суммарных антиоксидантов в эколого-географическом эксперименте // Овощи России. 2019. № 3. С. 87–90. https://doi.org/10.18619/2072-9146-2019-3-87-90
  2. Яшин А.Я., Яшин Я.И. Прибор для определения антиоксидантной активности растительных лекарственных экстрактов и напитков // МИС-РТ. 2004. № 34. С. 10–14.
  3. Bajpai P.K., Warghat A.R., Yadav A., Kant A., Srivastava R.B., Stobdan T. High phenotypic variation in Morus alba L. along an altitudinal gradient in the Indian trans-Himalaya // J. Mt. Sci. 2015. V. 12. № 2. P. 446–455. https://doi.org/10.1007/s11629-013-2875-2
  4. Brown A.J., Galea A.M. Cholesterol as an evolutionary response to living with oxygen // Evolution. 2010. V. 64. № 7. P. 2179–2183. https://doi.org/10.1111/j.1558-5646.2010.01011.x
  5. Carrillo C., Cavia M., Alonso-Torre S.R. Efecto antitumoral del acido oleico; mecanismos de accion: revision cientifica // Nutr Hosp. 2012. V. 27. № 6. P. 1860–1865. http://hdl.handle.net/10259.4/2522
  6. Carta G., Murru E., Lisai S., Sirigu A., Piras A., Collu M., Banni S. Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues // PLoS One. 2015. V. 10. № 3. P. e0120424. https://doi.org/10.1371/journal.pone.0120424
  7. Cox B.D., Whichelow M.J., Prevost A.T. Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer // Public Health Nutr. 2000. V. 3. № 1. P. 19–29. https://doi.org/10.1017/S1368980000000045
  8. Del Rio D., Borges G., Crozier A. Berry flavonoids and phenolics: bioavailability and evidence of protective effects // Br.J. Nutr. 2010. V. 104. № 3. P. S67–S90. https://doi.org/10.1017/S0007114510003958
  9. Dillard C.J., German J.B. Phytochemicals: nutraceuticals and human health // J. Sci. Food Agric. 2000. V. 80. № 12. P. 1744–1756. https://doi.org/10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W
  10. Evstatieva L., Todorova M., Antonova D., Staneva J. Chemical composition of the essential oils of Rhodiola rosea L. of three different origins // Pharmacogn. Mag. 2010. V. 6. № 24. P. 256. https://doi.org/10.4103/0973-1296.71782
  11. Garcia-Closas R., Gonzalez C.A., Agudo A., Riboli E. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain // Cancer Causes & Control. 1999. V. 10. № 1. P. 71–75. https://doi.org/10.1080/01635589809514734
  12. Gecgel U., Velioglu S.D., Velioglu H.M. Investigating some physicochemical properties and fatty acid composition of native black mulberry (Morus nigra L.) seed oil // J. Am. Oil Chem. Soc. 2011. V. 88. № 8. P. 1179–1187. https://doi.org/10.1007/s11746-011-1771-6
  13. Guil‐Guerrero J.L. Stearidonic acid (18: 4n‐3): Metabolism, nutritional importance, medical uses and natural sources // Eur. J. Lipid Sci. Technol. 2007. V. 109. № 12. P. 1226–1236. https://doi.org/10.1002/ejlt.200700207
  14. Guil-Guerrero J.L., García Maroto F.F., Gimenez Gimenez A. Fatty acid profiles from forty-nine plant species that are potential new sources of γ-linolenic acid. // J. Am. Oil Chem. Soc. 2001. V. 78. № 7. P. 677–684. https://doi.org/10.1007/s11746-001-0325-9
  15. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow // Mol. Aspects Med. 2006. V. 27. № 1. P. 1–93. https://doi.org/10.1016/j.mam.2хромато-масс-спектрометри005.07.008
  16. Hu J., Vinothkanna A., Wu M., Ekumah J.N., Akpabli‐Tsigbe N.D.K., Ma Y. Tracking the dynamic changes of a flavor, phenolic profile, and antioxidant properties of Lactiplantibacillus plantarum‐and Saccharomyces cerevisiae‐fermented mulberry wine // Food Sci. Nutr. 2021. V. 9. № 11. P. 6294–6306. https://doi.org/10.1002/fsn3.2590
  17. Huang D., Ou B., Prior R.L. The chemistry behind antioxidant capacity assays // J. Agric. Food Chem. 2005. V. 53. № 6. P. 1841–1856. https://doi.org/10.1021/jf030723c
  18. Iso H., Sato S., Umemura U., Kudo M., Koike K., Kitamura A., Imano H., Okamura T., Naito Y., Shimamoto T. Linoleic acid, other fatty acids, and the risk of stroke // Stroke. 2002. V. 33. № 8. P. 2086–2093. https://doi.org/10.1161/01.STR.0000023890.25066.50
  19. Kelly F.D., Sinclair A.J., Mann N.J., Turner A.H., Abedin L., Li D. A stearic acid-rich diet improves thrombogenic and atherogenic risk factor profiles in healthy males // Eur. J. Clin. Nutr. 2001. V. 55. № 2. P. 88–96. https://doi.org/10.1038/sj.ejcn.1601122
  20. Kim B.S., Kim H., Kang S.S. In vitro anti-bacterial and anti-inflammatory activities of lactic acid bacteria-biotransformed mulberry (Morus alba Linnaeus) fruit extract against Salmonella Typhimurium // Food Control. 2019. V. 106. P. 106758. https://doi.org/10.1016/j.foodcont.2019.106758
  21. Kim H., Chung M.S. Antiviral activities of mulberry (Morus alba) juice and seed against influenza viruses // J. Evidence-Based Complementary Altern. Med. 2018. V. 2018. P. 1–10. https://doi.org/10.1155/2018/2606583
  22. Li X., Xin Y., Mo Y., Marozik P., He T., Guo H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism // Molecules. 2022. V. 27. № 2. P. 523. https://doi.org/10.3390/molecules27020523
  23. Pieszka M., Migdal W., Gąsior R., Rudzinska M., Bederska-Lojewska D., Pieszka M., Szczurek P. Native oils from apple, blackcurrant, raspberry, and strawberry seeds as a source of polyenoic fatty acids, tocochromanols, and phytosterols: A health implication // Journal of Chemistry. 2015. V. 2015. P. 1–8. https://doi.org/10.1155/2015/659541
  24. Prior R.L., Cao G. Antioxidant phytochemicals in fruits and vegetables: diet and health implications // HortScience. 2000. V. 35. № 4. P. 588–592. https://doi.org/10.21273/HORTSCI.35.4.588
  25. Prior R.L., Wu X., Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements // J. Agric. Food Chem. 2005. V. 53. № 10. P. 4290–4302. https://doi.org/10.1021/jf0502698
  26. Rahal A., Deb R., Latheef S.K., Tiwari R., Verma A.K., Kumar A., Dhama K. Immunomodulatory and therapeutic potentials of herbal, traditional/indigenous and ethnoveterinary medicines // Pak. J. Biol. Sci. 2012. V. 15. № 16. P. 754–774. https://doi.org/10.3923/pjbs.2012.754.774
  27. Rahman M.M., Akther A., Moinuddin M., Yeasmin M.S., Rahman M.M., Rahman M.S., Ferdousi S.A., Sayeed M.A. Investigation some physicochemical properties, lipids, glycerides and fatty acid composition of mulberry (Morus alba L.) seed oil of three different regions of Bangladesh // Am.J. Appl. Chem. 2014. V. 2. P. 38–41. https://doi.org/10.11648/j.ajac.20140203.11
  28. Sanchez-Salcedo E.M., Sendra E., Carbonell-Barrachina A.A., Martínez J.J., Hernandez F. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries // Food Chemistry. 2016. V. 190. P. 566–571. https://doi.org/10.1016/j.foodchem.2015.06.008
  29. Skrovankova S., Sumczynski D., Mlcek J., Jurikova T., Sochor J. Bioactive compounds and antioxidant activity in different types of berries // Int. J. Mol. Sci. 2015. V. 16. № 10. P. 24673–24706. https://doi.org/10.3390/ijms161024673
  30. Upadhayay U.P.P.D.D., Chikitsa P., Sansthan V.V.E.G.A. Clinical drug interactions: a holistic view // Pak. J. Biol. Sci. 2013. V. 16. № 16. P. 751–758. https://doi.org/10.3923/pjbs.2013.751.758
  31. Van Hoed V., Barbouche I., De Clercq N., Dewettinck K., Slah M., Leber E., Verhe R. Influence of filtering of cold pressed berry seed oils on their antioxidant profile and quality characteristics // Food Chemistry. 2011. V. 127. № 4. P. 1848–1855. https://doi.org/10.1016/j.foodchem.2011.01.134
  32. Van Hoed V., De Clercq N., Echim C., Andjelkovic M., Leber E., Dewettinck K., Verhe R. Berry seeds: a source of specialty oils with high content of bioactives and nutritional value // J. Food Lipids. 2009. V. 16. № 1. P. 33–49. https://doi.org/10.1111/j.1745-4522.2009.01130.x
  33. Vivancos M., Moreno J.J. β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages // Free Radic. Biol. Med. 2005. V. 39. № 1. P. 91–97. https://doi.org/10.1016/j.freeradbiomed.2005.02.025
  34. Wang T., Hicks K.B., Moreau R. Antioxidant activity of phytosterols, oryzanol, and other phytosterol conjugates // J. Am. Oil Chem. Soc. 2002. V. 79. № 12. P. 1201–1206. https://doi.org/10.1007/s11746-002-0628-x
  35. Wargovich M.J. Anticancer properties of fruits and vegetables // HortScience. 2000. V. 35. № (4). P. 573–575. https://doi.org/10.21273/hortsci.35.4.573
  36. Weng X.C., Wang W. Antioxidant activity of compounds isolated from Salvia plebeia // Food Chemistry. 2000. V. 71. № 4. P. 489–493. https://doi.org/10.1016/S0308-8146(00)00191-6
  37. Yang B., Ahotupa M., Maatta P., Kallio H. Composition and antioxidative activities of supercritical CO2-extracted oils from seeds and soft parts of northern berries // Food Res. Int. 2011. V. 44. № 7. P. 2009–2017. https://doi.org/10.1016/j.foodres.2011.02.025
  38. Zhang H., Ma Z.F., Luo X., Li X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review // Antioxidants. 2018. V. 7. № 5. P. 69. https://doi.org/10.3390/antiox7050069

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Oil extraction steps

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies