Insect Mortality Caused by Baculovirus: a Model of Second-Order Phase Transitions

Cover Page

Cite item

Full Text

Abstract

Baculoviruses, especially prevalent in Lepidoptera, have attracted the most attention as biological insect control agents. Infection with baculoviruses is usually fatal and therefore can affect host population density, especially if virus transmission increases with host density. Lepidoptera larvae show a strong dose-dependent response to pathogens such as baculoviruses, so their response to various pathogen exposures was studied in the present work. Models of virus exposure to insect hosts are usually judged by whether or not they generate cyclical population dynamics of multiple host generations. However, the existing theoretical models based on systems of differential equations are of little use for practical application due to the large number of variables and free parameters. In this regard, the possibility of using a mathematical model for describing the epizootic Malacosoma neustria L. and Lymantria dispar L. under the influence of nuclear polyhedrosis virus is considered. To assess the sensitivity of insects to the effects of baculoviruses, laboratory experiments were carried out on the mortality of caterpillars under various infectious loads. In this paper, we consider the possibility of constructing a model for the lifetime of insects after exposure to baculoviruses as an analogue of a second-order phase transition in physical systems and give estimates of the model parameters for two insect species at different titers of baculoviruses and at different ages of caterpillars. The dependence of the parameters of the proposed model on nuclear polyhedrosis virus strains is shown. The importance of the applied parameters for the organization of forest protection measures is substantiated.

About the authors

V. G. Soukhovolsky

V.N. Sukachev Institute of Forest SB RAS, Russian Academy of Science, Siberian Branch

Author for correspondence.
Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Academgorodok, 50/28

D. K. Kurenschikov

Institute of Water and Ecology Problems KFRC RAS, Far-Eastern Branch

Email: soukhovolsky@yandex.ru
Russia, 680000, Khabarovsk, Dikopoltsev St., 56

Yu. D. Ivanova

Institute of Biophysics, Russian Academy of Science, Siberian Branch

Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Academgorodok, 50/50

A. V. Kovalev

Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch

Email: soukhovolsky@yandex.ru
Russia, 660036, Krasnoyarsk, Akademgorodok, 50

References

  1. Исаев А.С., Хлебопрос Р.Г., Недорезов Л.В., Кондаков Ю.П., Киселев В.В., Суховольский В.Г. Популяционная динамика лесных насекомых. М.: Наука, 2001. 374 с.
  2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика Статистическая физика. Ч. I. М.: Наука, 1976. 584 с.
  3. Anderson R.M., May R.M. Infectious diseases and population cycles of forest insects // Science. 1980. V. 210. P. 658–661.
  4. Bailey D., Chandler W.P., Grant J., Greaves G., Prince M. Tatchell. Biopesticides: Pest Management and Regulation. CABI International, Wallingford. 2010. 232 p.
  5. Bonsall M., Godfray H.C.J., Briggs C., Hassell M.P. Does host self-regulation increase the likelihood of insect-pathogen population cycles? // Am. Nat. 1999. V. 153. P. 228–235.
  6. Boots M., Norman R. Sublethal infection and the population dynamics of host-microparasite interactions // J. Anim. Ecol. 2000. V. 69. P. 517–524.
  7. Bowers R., Begon M., Hodgkinson D. Host-pathogen population cycles in forest insects? Lessons from simple models reconsidered // Oikos. 1993. V. 67. P. 529–538.
  8. Briggs C.J., Godfray H.C.J. The dynamics of insect-pathogen interactions in seasonal environments // Theor. Popul. Biol. 1996. V. 50. P. 149–177.
  9. Bruce A.D., Cowley R.A. Structural phase transitions. L.: Taylor & Francis, 1981. 326 p.
  10. Copping L.G., Menn J.J. Biopesticides: a review of their actions, applications and efficacy// Pest Manage Sci. 2000. V. 56. P. 651–676.
  11. Cory J.S., Clarke E.E., Brown M.L., Hails R.S., O’Reilly D.R. Microparasite manipulation of an insect: the influence of the egt gene on the interaction between a baculovirus and its lepidopteran host // Funct. Ecol. 2004. V. 18. P. 443–450.
  12. Cory J.S., Myers J.H. The ecology and evolution of insect baculoviruses // Ann. Rev. Ecol. Evol. Syst. 2003. V. 34. P. 239–272.
  13. Cox D.R., Oakes D. Analysis of survival data. CRC Press, Boca Raton, 1984. 208 p.
  14. Dwyer G., Dushoff J., Elkinton J.S., Levin S.A. Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data // Am. Nat. 2000. V. 156. P. 105–120.
  15. Dwyer G., Elkinton J.S., Buonaccorsi J.P. Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model // Am. Nat. 1997. V. 150. P. 685–707.
  16. Elam P., Vail P.V., Schreiber F. Infectivity of Autographa californica nuclear polyhedrosis virus extracted with digestive fluids of Heliothis zea, Estigmene acrea, and carbonate solutions // J. Invertebr. Pathol. 1990. V. 55. P. 278–283.
  17. Elkinton J.S. Gypsy Moth. In Encyclopedia of Insects; Resh V.H., Cardé R.T. Eds.; Academic Press: San Diego, CA, USA, 2009. P. 435–439.
  18. Engelhard E.K., Volkman L.E. Developmental resistance in fourth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus // Virology. 1995. V. 209. P. 384–389.
  19. Getz W., Pickering J. Epidemic models: thresholds and population regulation // Am. Nat. 1983. V. 121. P. 893–898.
  20. Goldberg A.V., Romanowski V., Federici B.A., Sciocco de Cap A. Effect of the epap granulovirus on its host, Epinotia aporema (Lepidoptera: Tortricida) // J. Invertebr. Pathol. 2002. V. 80. P. 148–159.
  21. Han Y., van Houte S., Drees G.F., van Oers M.M., Ros V.I.D. Parasitic manipulation of host behaviour: baculovirus SeMNPV EGT facilitates tree-top disease in Spodoptera exigua larvae by extending the time to death // Insects. 2015. V. 6. P. 716–731.
  22. Harrison R.L., Keena M.A., Rowley D.L. Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America // J. Invertebr. Pathol. 2013. V. 116. P. 27–35.
  23. Hochberg M. Nonlinear transmission rates and the dynamics of infectious diseases // J. Theor. Biol. 1991. V. 153. P. 301–321.
  24. Ilyinykh A., Kurenschikov D., Ilyinykh Ph., Imranova E., Polenogova O., Baburin A. Sensitivity of gypsy moth Lymantria dispar larvae from geographically removed populations to nucleopolyhedrovirus // SHILAP Revta. lepid. 2013. V. 41. P. 349–356.
  25. Kalbfleisch J., Prentice R. The Statistical Analysis of Failure Time Data. N.Y.: J. Wiley, 2002. 462 p.
  26. Kleinbaum D.G., Klein M. Survival analysis: a self-learning text. Springer-Verlag N.Y. Inc., 2012. 700 p.
  27. Marrone P.G. Barriers to adoption of biological control agents and biological pesticides// CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2007. V. 2. № 051. 12 p.
  28. Martemyanov V.V., Dubovskiy I.M., Rantala M.J., Salminen J.-P., Belousova I.A., Pavlushin S.V., Bakhvalov S.A., Glupov V.V. The Effects of Defoliation-Induced Delayed Changes in Silver Birch Foliar Chemistry on Gypsy Moth Fitness, Immune Response, and Resistance to Baculovirus Infection // J. Chem. Ecol. 2012. V. 38. P. 295–305.
  29. Matthews H.J., Smith I., Edwards J.P. Lethal and sublethal effects of a granulovirus on the tomato moth Lacanobia oleracea // J. Invertebr. Pathol. 2001. V. 80. P. 73–80.
  30. Milks M.L., Myers J.M., Leptich M.K. Costs and stability of cabbage looper resistance to a nucleopolyhedrovirus // Evol. Ecol. 2002. V. 16. P. 369–385.
  31. Moscardi F. Assessment of the application of baculoviruses for control of Lepidoptera // Ann. Rev. Entomol. 1999. V. 44. P. 257–289.
  32. Myers J.H. Population fluctuations of the western tent caterpillar in southwestern British Columbia. // Popul. Ecol. 2000. V. 42. P. 231–241.
  33. Myers J., Malakar H.R., Cory J.S. Syblethal nucleopolyhedrovirus infection effects on female pupal weight, egg mass size, and vertical transmission in gypsy moth (Lepidoptera: Lymantriidae) // Environ. Entomol. 2000. V. 29. P. 1268–1272.
  34. Podgwaite J.D. Gypchek: Biological Insecticide for the Gypsy Moth // J. For. 1999. V. 97. P. 16–19.
  35. Regniere J. Vertical transmission of diseases and population dynamics of insects with discrete generations: a model // J. Theor. Biol. 1984. V. 107. P. 287–301.
  36. Rohrmann G.R. Baculovirus molecular biology. 3rd ed. Bethesda (MD): Nat. Center Biotechnol. Inform. (US), 2013. 347 p.
  37. Saxena A., Byram P.K., Singh S.K., Chakraborty J., Murhammer D., Giri L.J. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell-virus interaction // General Virology. 2018. V. 99. P. 1151–1171.
  38. Shrestha S., Elderd B.D., Dukic V. Bayesian-based survival analysis: inferring time to death in host-pathogen interactions // Environmental and Ecological Statistics. 2019. V. 26. P. 17–45.
  39. Szewcyk B., Hoyos-Carvajal L., Paluszek M., Skrzecz I., Lobo de Souza M. Baculovirusesre-emerging biopesticides // Biotechnol. Adv. 2006. V. 24. P. 143–160.
  40. Thakore Y. The biopesticide market for global agricultural use // Ind. Biotechnol. 2006. V. 2(3). P. 194–208.
  41. Ulrich Y., Schmid-Hempel P. Host modulation of parasite competition in multiple infections // Proc. R. Soc. Lond. B: Biol. Sci. 2012. V. 279. P. 2982–2989.
  42. Vezina A., Peterman R. Tests of the role of nuclear polyhedrosis virus in the population dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidpotera: Lymantriidae) // Oecologia. 1985. V. 67. P. 260–266.
  43. White A., Bowers R., Begon M. Host-pathogen cycles in self-regulated forest insect systems: resolving conflicting predictions // Am. Nat. 1996. V. 148. P. 220–225.
  44. Woods S.A., Elkinton J.S. Bimodal patterns of mortality from nuclear polyhedrosis virus in gypsy moth Lymantria dispar populations // J. Invertebr. Pathol. 1987. V. 50. P. 151–157.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (16KB)
3.

Download (45KB)
4.

Download (46KB)
5.

Download (45KB)
6.

Download (51KB)
7.

Download (20KB)
8.

Download (36KB)
9.

Download (40KB)

Copyright (c) 2023 В.Г. Суховольский, Д.К. Куренщиков, Ю.Д. Иванова, А.В. Ковалев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».