Смертность насекомых под воздействием бакуловируса: модель фазовых переходов второго рода

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена возможность применения математической модели фазовых переходов второго рода с двумя свободными параметрами для описания эпизоотии кольчатого шелкопряда Malacosoma neustria L. и непарного шелкопряда Lymantria dispar L. под воздействием вируса ядерного полиэдроза. Для оценки чувствительности насекомых к воздействию бакуловирусов проводились лабораторные эксперименты по оценке выживаемости гусениц под различной инфекционной нагрузкой. В модели описывался процесс гибели особей в зависимости от двух факторов – титра вирусов как дозы воздействия и продолжительности жизни особи в зависимости от титра вирусов. Информация о продолжительности жизни насекомых после воздействия вируса представлена в виде функции выживания. В настоящей работе рассмотрена возможность построения модели времени жизни насекомых после воздействия бакуловирусов как аналога фазового перехода второго рода в физических системах и даны оценки параметров моделей для двух видов насекомых при разных титрах бакуловирусов и при разном возрасте гусениц. Показано, что продолжительность латентного периода и времени гибели всех особей в выборке линейно уменьшается с ростом логарифма титра вирусов.

Об авторах

В. Г. Суховольский

Институт леса им. В.Н. Сукачева – обособленное подразделение ФИЦ КНЦ СО РАН

Автор, ответственный за переписку.
Email: soukhovolsky@yandex.ru
Россия, 660036, Красноярск, Академгородок, 50/28

Д. К. Куренщиков

Институт водных и экологических проблем ХФИЦ ДВО РАН

Email: soukhovolsky@yandex.ru
Россия, 680000, Хабаровск, ул. Дикопольцева, 56

Ю. Д. Иванова

Институт биофизики – обособленное подразделение ФИЦ КНЦ СО РАН

Email: soukhovolsky@yandex.ru
Россия, 660036, Красноярск, Академгородок, 50/50

А. В. Ковалев

ФИЦ КНЦ СО РАН

Email: soukhovolsky@yandex.ru
Россия, 660036, Красноярск, Академгородок, 50

Список литературы

  1. Исаев А.С., Хлебопрос Р.Г., Недорезов Л.В., Кондаков Ю.П., Киселев В.В., Суховольский В.Г. Популяционная динамика лесных насекомых. М.: Наука, 2001. 374 с.
  2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика Статистическая физика. Ч. I. М.: Наука, 1976. 584 с.
  3. Anderson R.M., May R.M. Infectious diseases and population cycles of forest insects // Science. 1980. V. 210. P. 658–661.
  4. Bailey D., Chandler W.P., Grant J., Greaves G., Prince M. Tatchell. Biopesticides: Pest Management and Regulation. CABI International, Wallingford. 2010. 232 p.
  5. Bonsall M., Godfray H.C.J., Briggs C., Hassell M.P. Does host self-regulation increase the likelihood of insect-pathogen population cycles? // Am. Nat. 1999. V. 153. P. 228–235.
  6. Boots M., Norman R. Sublethal infection and the population dynamics of host-microparasite interactions // J. Anim. Ecol. 2000. V. 69. P. 517–524.
  7. Bowers R., Begon M., Hodgkinson D. Host-pathogen population cycles in forest insects? Lessons from simple models reconsidered // Oikos. 1993. V. 67. P. 529–538.
  8. Briggs C.J., Godfray H.C.J. The dynamics of insect-pathogen interactions in seasonal environments // Theor. Popul. Biol. 1996. V. 50. P. 149–177.
  9. Bruce A.D., Cowley R.A. Structural phase transitions. L.: Taylor & Francis, 1981. 326 p.
  10. Copping L.G., Menn J.J. Biopesticides: a review of their actions, applications and efficacy// Pest Manage Sci. 2000. V. 56. P. 651–676.
  11. Cory J.S., Clarke E.E., Brown M.L., Hails R.S., O’Reilly D.R. Microparasite manipulation of an insect: the influence of the egt gene on the interaction between a baculovirus and its lepidopteran host // Funct. Ecol. 2004. V. 18. P. 443–450.
  12. Cory J.S., Myers J.H. The ecology and evolution of insect baculoviruses // Ann. Rev. Ecol. Evol. Syst. 2003. V. 34. P. 239–272.
  13. Cox D.R., Oakes D. Analysis of survival data. CRC Press, Boca Raton, 1984. 208 p.
  14. Dwyer G., Dushoff J., Elkinton J.S., Levin S.A. Pathogen-driven outbreaks in forest defoliators revisited: building models from experimental data // Am. Nat. 2000. V. 156. P. 105–120.
  15. Dwyer G., Elkinton J.S., Buonaccorsi J.P. Host heterogeneity in susceptibility and disease dynamics: tests of a mathematical model // Am. Nat. 1997. V. 150. P. 685–707.
  16. Elam P., Vail P.V., Schreiber F. Infectivity of Autographa californica nuclear polyhedrosis virus extracted with digestive fluids of Heliothis zea, Estigmene acrea, and carbonate solutions // J. Invertebr. Pathol. 1990. V. 55. P. 278–283.
  17. Elkinton J.S. Gypsy Moth. In Encyclopedia of Insects; Resh V.H., Cardé R.T. Eds.; Academic Press: San Diego, CA, USA, 2009. P. 435–439.
  18. Engelhard E.K., Volkman L.E. Developmental resistance in fourth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedrosis virus // Virology. 1995. V. 209. P. 384–389.
  19. Getz W., Pickering J. Epidemic models: thresholds and population regulation // Am. Nat. 1983. V. 121. P. 893–898.
  20. Goldberg A.V., Romanowski V., Federici B.A., Sciocco de Cap A. Effect of the epap granulovirus on its host, Epinotia aporema (Lepidoptera: Tortricida) // J. Invertebr. Pathol. 2002. V. 80. P. 148–159.
  21. Han Y., van Houte S., Drees G.F., van Oers M.M., Ros V.I.D. Parasitic manipulation of host behaviour: baculovirus SeMNPV EGT facilitates tree-top disease in Spodoptera exigua larvae by extending the time to death // Insects. 2015. V. 6. P. 716–731.
  22. Harrison R.L., Keena M.A., Rowley D.L. Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America // J. Invertebr. Pathol. 2013. V. 116. P. 27–35.
  23. Hochberg M. Nonlinear transmission rates and the dynamics of infectious diseases // J. Theor. Biol. 1991. V. 153. P. 301–321.
  24. Ilyinykh A., Kurenschikov D., Ilyinykh Ph., Imranova E., Polenogova O., Baburin A. Sensitivity of gypsy moth Lymantria dispar larvae from geographically removed populations to nucleopolyhedrovirus // SHILAP Revta. lepid. 2013. V. 41. P. 349–356.
  25. Kalbfleisch J., Prentice R. The Statistical Analysis of Failure Time Data. N.Y.: J. Wiley, 2002. 462 p.
  26. Kleinbaum D.G., Klein M. Survival analysis: a self-learning text. Springer-Verlag N.Y. Inc., 2012. 700 p.
  27. Marrone P.G. Barriers to adoption of biological control agents and biological pesticides// CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. 2007. V. 2. № 051. 12 p.
  28. Martemyanov V.V., Dubovskiy I.M., Rantala M.J., Salminen J.-P., Belousova I.A., Pavlushin S.V., Bakhvalov S.A., Glupov V.V. The Effects of Defoliation-Induced Delayed Changes in Silver Birch Foliar Chemistry on Gypsy Moth Fitness, Immune Response, and Resistance to Baculovirus Infection // J. Chem. Ecol. 2012. V. 38. P. 295–305.
  29. Matthews H.J., Smith I., Edwards J.P. Lethal and sublethal effects of a granulovirus on the tomato moth Lacanobia oleracea // J. Invertebr. Pathol. 2001. V. 80. P. 73–80.
  30. Milks M.L., Myers J.M., Leptich M.K. Costs and stability of cabbage looper resistance to a nucleopolyhedrovirus // Evol. Ecol. 2002. V. 16. P. 369–385.
  31. Moscardi F. Assessment of the application of baculoviruses for control of Lepidoptera // Ann. Rev. Entomol. 1999. V. 44. P. 257–289.
  32. Myers J.H. Population fluctuations of the western tent caterpillar in southwestern British Columbia. // Popul. Ecol. 2000. V. 42. P. 231–241.
  33. Myers J., Malakar H.R., Cory J.S. Syblethal nucleopolyhedrovirus infection effects on female pupal weight, egg mass size, and vertical transmission in gypsy moth (Lepidoptera: Lymantriidae) // Environ. Entomol. 2000. V. 29. P. 1268–1272.
  34. Podgwaite J.D. Gypchek: Biological Insecticide for the Gypsy Moth // J. For. 1999. V. 97. P. 16–19.
  35. Regniere J. Vertical transmission of diseases and population dynamics of insects with discrete generations: a model // J. Theor. Biol. 1984. V. 107. P. 287–301.
  36. Rohrmann G.R. Baculovirus molecular biology. 3rd ed. Bethesda (MD): Nat. Center Biotechnol. Inform. (US), 2013. 347 p.
  37. Saxena A., Byram P.K., Singh S.K., Chakraborty J., Murhammer D., Giri L.J. A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell-virus interaction // General Virology. 2018. V. 99. P. 1151–1171.
  38. Shrestha S., Elderd B.D., Dukic V. Bayesian-based survival analysis: inferring time to death in host-pathogen interactions // Environmental and Ecological Statistics. 2019. V. 26. P. 17–45.
  39. Szewcyk B., Hoyos-Carvajal L., Paluszek M., Skrzecz I., Lobo de Souza M. Baculovirusesre-emerging biopesticides // Biotechnol. Adv. 2006. V. 24. P. 143–160.
  40. Thakore Y. The biopesticide market for global agricultural use // Ind. Biotechnol. 2006. V. 2(3). P. 194–208.
  41. Ulrich Y., Schmid-Hempel P. Host modulation of parasite competition in multiple infections // Proc. R. Soc. Lond. B: Biol. Sci. 2012. V. 279. P. 2982–2989.
  42. Vezina A., Peterman R. Tests of the role of nuclear polyhedrosis virus in the population dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidpotera: Lymantriidae) // Oecologia. 1985. V. 67. P. 260–266.
  43. White A., Bowers R., Begon M. Host-pathogen cycles in self-regulated forest insect systems: resolving conflicting predictions // Am. Nat. 1996. V. 148. P. 220–225.
  44. Woods S.A., Elkinton J.S. Bimodal patterns of mortality from nuclear polyhedrosis virus in gypsy moth Lymantria dispar populations // J. Invertebr. Pathol. 1987. V. 50. P. 151–157.

Дополнительные файлы


© В.Г. Суховольский, Д.К. Куренщиков, Ю.Д. Иванова, А.В. Ковалев, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».