Numerical Investigation of the Direct Variational Algorithm of Data Assimilation in the Urban Scenario
- 作者: Penenko A.V.1, Mukatova Z.S.1, Penenko V.V.1, Gochakov A.V.2, Antokhin P.N.3
-
隶属关系:
- Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch
- Siberian Regional Hydrometeorological Research Institute
- V.E. Zuev Institute of Atmospheric Optics, Siberian Branch
- 期: 卷 31, 编号 6 (2018)
- 页面: 678-684
- 栏目: Optical Models and Databases
- URL: https://journals.rcsi.science/1024-8560/article/view/188617
- DOI: https://doi.org/10.1134/S102485601806012X
- ID: 188617
如何引用文章
详细
The performance of a direct variational data assimilation algorithm with quasi-independent data assimilation at individual steps of the splitting scheme has been studied in a realistic scenario of air pollution assessment in the city of Novosibirsk by monitoring system data. For operation under conditions of a sparse monitoring network, an algorithm with minimization of the spatial derivative of the uncertainty (control) function adjusted to data assimilation is proposed. The use of the spatial derivative minimization increases the smoothness of the uncertainty (control functions) reconstructed, which has a positive effect on the reconstruction quality in the scenario considered.
作者简介
A. Penenko
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch
编辑信件的主要联系方式.
Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090
Zh. Mukatova
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch
Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090
V. Penenko
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch
Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090
A. Gochakov
Siberian Regional Hydrometeorological Research Institute
Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630099
P. Antokhin
V.E. Zuev Institute of Atmospheric Optics, Siberian Branch
Email: a.penenko@yandex.ru
俄罗斯联邦, Tomsk, 634055
补充文件
