Numerical Investigation of the Direct Variational Algorithm of Data Assimilation in the Urban Scenario


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The performance of a direct variational data assimilation algorithm with quasi-independent data assimilation at individual steps of the splitting scheme has been studied in a realistic scenario of air pollution assessment in the city of Novosibirsk by monitoring system data. For operation under conditions of a sparse monitoring network, an algorithm with minimization of the spatial derivative of the uncertainty (control) function adjusted to data assimilation is proposed. The use of the spatial derivative minimization increases the smoothness of the uncertainty (control functions) reconstructed, which has a positive effect on the reconstruction quality in the scenario considered.

作者简介

A. Penenko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

编辑信件的主要联系方式.
Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090

Zh. Mukatova

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090

V. Penenko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630090

A. Gochakov

Siberian Regional Hydrometeorological Research Institute

Email: a.penenko@yandex.ru
俄罗斯联邦, Novosibirsk, 630099

P. Antokhin

V.E. Zuev Institute of Atmospheric Optics, Siberian Branch

Email: a.penenko@yandex.ru
俄罗斯联邦, Tomsk, 634055

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018