Numerical Investigation of the Direct Variational Algorithm of Data Assimilation in the Urban Scenario


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The performance of a direct variational data assimilation algorithm with quasi-independent data assimilation at individual steps of the splitting scheme has been studied in a realistic scenario of air pollution assessment in the city of Novosibirsk by monitoring system data. For operation under conditions of a sparse monitoring network, an algorithm with minimization of the spatial derivative of the uncertainty (control) function adjusted to data assimilation is proposed. The use of the spatial derivative minimization increases the smoothness of the uncertainty (control functions) reconstructed, which has a positive effect on the reconstruction quality in the scenario considered.

Авторлар туралы

A. Penenko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

Хат алмасуға жауапты Автор.
Email: a.penenko@yandex.ru
Ресей, Novosibirsk, 630090

Zh. Mukatova

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

Email: a.penenko@yandex.ru
Ресей, Novosibirsk, 630090

V. Penenko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch

Email: a.penenko@yandex.ru
Ресей, Novosibirsk, 630090

A. Gochakov

Siberian Regional Hydrometeorological Research Institute

Email: a.penenko@yandex.ru
Ресей, Novosibirsk, 630099

P. Antokhin

V.E. Zuev Institute of Atmospheric Optics, Siberian Branch

Email: a.penenko@yandex.ru
Ресей, Tomsk, 634055

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018