Flow Structure and Transition to Local Turbulence Downstream of an Asymmetric Narrowing that Imitates Arterial Stenosis

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of experimental studies and numerical simulation of the flow structure in the separation region downstream of an asymmetric narrowing of smooth canal that simulates 70% onesided stenosis of the artery are presented. The Reynolds number was equal to 1800. The instantaneous flow velocity vector fields were measured using the SIV technique. The numerical solution was obtained by the large eddy simulation (LES) method. Setting the disturbances in numerical simulation close to the experimental conditions made it possible to obtain a satisfactory agreement between the calculated and experimental velocity fields and the components of the Reynolds stress tensor. The data on formation of the local flow turbulence region behind the constriction and subsequent downstream flow relaminarization are obtained. It is shown that a pair of secondary eddies localized within the region of flow separation is formed near the throat of the constriction.

Sobre autores

V. Molochnikov

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences,”; Tupolev Kazan National Research Technical University (KAI)

Email: vmolochnikov@mail.ru
Kazan, Russia; Kazan, Russia

N. Dushin

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences,”

Email: ndushin@bk.ru
Kazan, Russia

N. Pashkova

Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences,”; Tupolev Kazan National Research Technical University (KAI)

Email: pashkova-2000@mail.ru
Kazan, Russia; Kazan, Russia

Ya. Gataulin

Peter the Great Saint-Petersburg Polytechnic University

Email: yakov_gataulin@mail.ru
St. Petersburg, Russia

E. Smirnov

Peter the Great Saint-Petersburg Polytechnic University

Email: smirnov_em@spbstu.ru
St. Petersburg, Russia

A. Yukhnev

Peter the Great Saint-Petersburg Polytechnic University

Autor responsável pela correspondência
Email: a.yukhnev@mail.ru
St. Petersburg, Russia

Bibliografia

  1. Glagov S., Zarins C., Giddens D.P., Ku D.N. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries // Arch. Pathol. Lab. Med. 1988. V. 112. № 10. P. 1018–1031.
  2. Wootton D.M., Ku D.N. Fluid mechanics of vascular systems, diseases, and thrombosis // Annu. Rev. Biomed. Eng. 1999. V. 1. № 1. P. 299–329.
  3. Berger S.A., Jou L.D. Flows in stenotic vessels // Annu. Rev. Fluid Mech. 2000. V. 32. № 1. P. 347–382.
  4. Weinberg P.D. Hemodynamic wall shear stress, endothelial permeability and atherosclerosis-A triad of controversy // Front Bioeng. Biotechnol. 2022. V. 10. Art. 836680. P. 1–29.
  5. Caro C.G., Fitz-Gerald J.M., Schroter R.C. Atheroma and arterial wall shear-observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis // Proc. R. Soc. Lond.Ser. B. Biological Sciences. 1971. V. 177. № 1046. P. 109–133.
  6. Gibson C.M., Diaz L., Kandarpa K., Sacks F.M., Pasternak R.C., Sandor T., Feldman C., Stone P.H. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries // Arterioscler. Thromb. Vasc. Biol. 1993. V. 13. № 2. P. 310–315.
  7. Caro C.G. Discovery of the role of wall shear in atherosclerosis // Arterioscler. Thromb. Vasc. Biol. 2009. V. 29. № 2. P. 158–161.
  8. Barber T. Wall shear stress and near-wall flows in the stenosed femoral artery // Comput. Methods Biomech. Biomed. Eng. 2017. V. 20. № 10. P. 1048–1055.
  9. Khalifa A.M.A., Giddens D.P. Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs // J. Biomech. 1978. V. 11. № 3. P. 129–141.
  10. Hutchison K.J., Karpinski E. In vivo demonstration of flow recirculation and turbulence downstream of graded stenoses in canine arteries //J. Biomech. 1985. V. 18. № 4. P. 285–296.
  11. Wong E.Y., Nikolov H.N., Rankin R.N., Holdsworth D.W., Poepping T.L. Evaluation of distal turbulence intensity for the detection of both plaque ulceration and stenosis grade in the carotid bifurcation using clinical Doppler ultrasound // Eur. Radiol. 2013. V. 23. № 6. P. 1720–1728.
  12. Педли Т. Гидродинамика крупных кровеносных сосудов. М.: Мир. 1983. 400 с.
  13. Ku D.N. Blood flow in arteries // Annu. Rev. Fluid Mech. 1997. V. 29. № 1. P. 399–434.
  14. Cassanova R.A., Giddens D.P. Disorder distal to modeled stenoses in steady and pulsatile flow. // J. Biomech. 1978. V. 11. № 10–12. P. 441–453.
  15. Ahmed S.A., Giddens D.P. Flow disturbance measurements through a constricted tube at moderate Reynolds numbers // J. Biomech. 1983. V. 16. № 12. P. 955–963.
  16. Ojha M., Cobbold C., Johnston K., Hummel R. Pulsatile flow through constricted tubes: An experimental investigation using photochromic tracer methods // J. Fluid Mech. 1989. V. 203. P. 173–197.
  17. Mallinger F., Drikakis D. Instability in three-dimensional unsteady stenotic flows // Int. J. Heat Fluid Flow. 2002. V. 23. № 5. P. 657–663.
  18. Sherwin S.J., Blackburn H.M. Three-dimensional instabilities of steady and pulsatile axisymmetric stenotic flows // J. Fluid Mech. 2005. V. 533. P. 297–327.
  19. Varghese S.S., Frankel S.H., Fischer P.F. Direct numerical simulation of stenotic flows. Part 1. Steady flow // J. Fluid Mech. 2007. V. 582. P. 253–280.
  20. Varghese S.S., Frankel S.H., Fischer P.F. Direct numerical simulation of stenotic flows. Part 2. Pulsatile flow // J. Fluid Mech. 2007. V. 582. P. 281–318.
  21. Paul M.C., Molla M.M. Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations // Appl. Math. Model. 2012. V. 36. № 9. P. 4393–4413.
  22. Choi W., Park J.H., Byeon H. Flow characteristics around a deformable stenosis under pulsatile flow condition // Phys. Fluids. 2018. V. 30. № 1. P. 011902.
  23. Гатаулин Я.А., Смирнов Е.М. Численное исследование структуры и локальной турбулизации течения в кровеносном сосуде с односторонним стенозом // Науч.-техн. ведомости С.-Петербург. гос. политехн. ун-та. Физ.-мат. науки. 2021. Т. 14. № 1. С. 72–84.
  24. Freidoonimehr N., Chin R., Zander A., Arjomandiet V. Effect of shape of the stenosis on the hemodynamics of a stenosed coronary artery // Phys. Fluids. 2021. V. 33. № 8. P. 081914.
  25. Михеев Н.И., Душин Н.С. Метод измерения динамики векторных полей скорости турбулентного потока по видеосъемке дымовой визуализации // Приборы и техника эксперимента. 2016. № 6. С. 114–122.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (274KB)
3.

Baixar (534KB)
4.

Baixar (308KB)
5.

Baixar (610KB)
6.

Baixar (90KB)
7.

Baixar (328KB)
8.

Baixar (279KB)
9.

Baixar (78KB)
10.

Baixar (21KB)
11.

Baixar (182KB)
12.

Baixar (185KB)
13.

Baixar (51KB)

Declaração de direitos autorais © В.М. Молочников, Н.С. Душин, Н.Д. Пашкова, Я.А. Гатаулин, Е.М. Смирнов, А.Д. Юхнев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies