开放存取 开放存取  受限制的访问 ##reader.subscriptionAccessGranted##  受限制的访问 订阅存取

卷 63, 编号 6 (2016)

Research Papers

Involvement of phosphoenolpyruvate carboxylase and antioxydants enzymes in nitrogen nutrition tolerance in Sorghum bicolor plants

El Omari R., Ben Mrid R., Chibi F., Nhiri M.

摘要

Plants of Sorghum bicolor (C4 species) were grown at different nitrate or ammonium concentrations (0.5, 5, 20 and 50 mM) in order to examine the effect of nitrogen nutrition on growth, phosphoenolpyruvate carboxylase (PEPC) and antioxidant enzymes activities in both roots and leaves of 30-day-old plants. At high NO3 levels (20 and 50 mM) the fresh weight was significantly higher. When the nitrogen source was in ammonium form, the leaf and root mass increased drastically at low concentration 5 mM and significantly at 20 mM, however similar fresh weight was found at high level of ammonium (50 mM). The leaves catalase (CAT), guaiacol peroxidase (POD), glutathione reductase (GR), and glutathione S-transferase (GST) activities and the roots glutathione reductase and glutathione S-transferase activities were significantly higher in the NH4+-fed plants than those grown in the nitrate medium. Activity and proteins levels of phosphoenolpyruvate carboxylase in both leaves and roots of sorghum plants were increased progressively with increasing external nitrogen concentration. This increase was more pronounced at high level of ammonium (50 mM), being 2-fold at 50 mM of NO3 and 3-fold at 50 mM of NH4+. Our results suggested that antioxidant enzymes activities and PEPC play a key role in ammonium detoxification and tolerance in sorghum plants.

Russian Journal of Plant Physiology. 2016;63(6):719-726
pages 719-726 views

Salicylic acid induces the proton conductance in the inner mitochondrial membrane of lupine cotyledons

Shugaev A., Butsanets P., Shugaeva N.

摘要

The influence of salicylic acid (SA) on generation of membrane potential (Δψ) at the inner membrane of isolated mitochondria from cotyledons of lupine seedlings (Lupinus angustifolius L.) was investigated. The mitochondrial preparations conformed to all criteria of the intactness: the organelles were characterized by the integrity of their membranes and by tight coupling of oxidation and phosphorylation. High functional activity of mitochondria was also evident from their ability to generate Δψ during succinate oxidation and from the long-term maintenance of steady-state transmembrane potential by virtue of electrontransport chain (ETC) operation or ATP hydrolysis after the inhibition of respiratory ETC. The addition of SA to the incubation medium (0.5–1.0 mM) induced a fast and complete dissipation of Δψ after a distinct lag period. The Δψ was not restored by subsequent ATP hydrolysis, indicating that the phytohormone SA induced the proton conductance of the inner membrane. The SA-induced collapse of Δψ was observed under suppression of ETC by anaerobiosis, cyanide, or inhibitory concentrations of the phytohormone. The SAinduced dissipation of Δψ was not reversed by cyclosporine A but was prevented in the presence of dithiothreitol (DTT). Conversely, the incubation of mitochondria in the presence of phenylarsine oxide (PAO) known to oxidize the protein thiol groups also elevated the proton conductance and eliminated Δψ at the inner membrane of lupine mitochondria. The PAO-induced Δψ collapse was not reversed in the presence of ATP, but Δψ was restored after the addition of DTT. These results and the literature data suggest that, under suppressed ETC activity, salicylic acid permeabilizes the inner membrane of mitochondria from cotyledons of lupine seedlings due to opening of a specialized mitochondrial uncoupling channel (MUC) that is permeable to protons and, possibly, to other small cations (K+, Ca2+). An important role in the induction of MUC belongs apparently to oxidative stress resulting in oxidation of thiol groups in protein molecules that constitute this channel or regulate the channel activity.

Russian Journal of Plant Physiology. 2016;63(6):727-738
pages 727-738 views

Phytochelatin synthesis and responses of antioxidants during arsenic stress in Nasturtium officinale

Namdjoyan S., Namdjoyan S., Kermanian H.

摘要

The induction of thiols including glutathione and phytochelatins as well as the activities of antioxidant enzymes namely superoxide dismutase isoenzymes and those enzymes involved in the ascorbate-glutathione cycle in watercress plants under arsenic stress were investigated. Arsenic concentrations and tissue type-dependent response to arsenic were assessed. Plant was capable of accumulating large amounts of arsenic in the shoots. Superoxide dismutase isoenzymes activity and phytochelatin level was higher in shoots than in roots. In roots, ascorbate levels increased significantly, while no relationship was found between ascorbate contents and arsenic tolerance in shoots. Treatment with arsenic resulted in a remarkable increase in glutathione content of roots at all of the arsenic concentrations, while in shoots, glutathione content increased by lower levels of arsenic. Differences were noted in both roots and shoots for enzymes involved in the ascorbate-glutathione cycle. These results suggest that, the strategy of tolerance to arsenic toxicity in roots of watercress plants is different from that of shoots.

Russian Journal of Plant Physiology. 2016;63(6):739-748
pages 739-748 views

Activities of antioxidant enzymes of Arabidopsis thaliana plants during cold hardening to hypothermia

Sin’kevich M., Selivanov A., Antipina O., Kropocheva E., Alieva G., Suvorova T., Astakhova N., Moshkov I.

摘要

Changes in activities of the enzymes performing direct antioxidant functions were studied in 7–8-week-old plants Arabidopsis thaliana Heinh (L.) of Columbia (Col-0) ecotype. It was found that 5-day cold hardening at 2°C increased plant cold resistance to the subsequent stronger cooling. Under these conditions, the marked changes occurred in activities of superoxide dismutase and III type (guaiacol) peroxidses but not in that of catalase. The total peroxidase activity exceeded the catalase activity before cold hardening. Therefore, peroxidases are able to decompose more H2O2 than catalases and appear to make the dominant contribution to the protection from the cold damage.

Russian Journal of Plant Physiology. 2016;63(6):749-753
pages 749-753 views

The short-term responses of glutathione and phytochelation synthetic pathways genes to additional nitrogen under cadmium stress in poplar leaves

Lin T., Wan X., Zhang F.

摘要

Earlier it was noticed that the supplementary nitrogen to nutritive solution of the cadmium stressed (Cd-stressed) plants can alleviate the toxic effects of this metal on the plants and improve plant growth performance. But the underlying mechanisms of such detoxification effect of nitrogen were not studied. In this study, a ten-day responses of related nitrogen-synthesized genes including γ-glutamylcysteine synthetase (γ-GCs), glutathione synthetase (ECGs) and phytochelatin synthase (PCs) involved in glutathione (ECG) and phytochelation (PC) synthetic pathways were examined. The plant growth performance and leaf chlorophyll content were examined at the final harvest. It was shown that the supplement of additional nitrogen to poplar plants under cadmium stress could significantly up-regulate the expression levels of γ-GCs, ECGs and PCs genes in plant leaves during the first 12 hours. Furthermore, cadmium stressed plants with additional nitrogen supplement showed significant enhancement in growth performance and increase in leaf chlorophyll content compared to sole cadmium stressed plants. Our results suggest that additional nitrogen could stimulate a short-term defense system in poplar plants through ECG and PC synthetic pathways. It is contribute to the alleviation of the toxic symptoms in polar plants caused by cadmium stress. This study provides a potential method to render harmless cadmium toxicity in stressed plants with nitrogen fertilization.

Russian Journal of Plant Physiology. 2016;63(6):754-762
pages 754-762 views

Cell ultrastructure and fatty acid composition of lipids in vegetative organs of Chenopodium album L. under salt stress conditions

Ivanova T., Maiorova O., Orlova Y., Kuznetsova E., Khalilova L., Myasoedov N., Balnokin Y., Tsydendambaev V.

摘要

White goosefoot plants (Chenopodium album L. of the family Chenopodiaceae) grown at various NaCl concentrations (3–350 mM) in the nutrient solution were used to study the cell ultrastructure as well as the qualitative and quantitative composition of fatty acids in the lipids of vegetative organs. In addition, the biomass of Ch. album vegetative organs, the water content, and the concentrations of K+, Na+, and Cl were determined. The growth rates of plants raised at NaCl concentrations up to 200–250 mM were the same as for the control plants grown at 3 mM NaCl; the growth parameters remained rather high even at NaCl concentrations of 300–350 mM. The water content in Ch. album organs remained high at all NaCl concentrations tested. Analysis of the ionic status of Ch. album revealed a comparatively high K+ content in plant organs. At low NaCl concentrations in the nutrient solution, K+ ions were the dominant contributors to the osmolarity (the total concentration of osmotically active substances) and, consequently, to the lowered cell water potential in leaves and roots. As the concentration of NaCl was increased, the plant organs accumulated larger amounts of Na+ and Cl, and the contribution of these ion species to osmolarity became increasingly noticeable. At 300–350 mM NaCl the contribution of Na+ and Cl to osmolarity was comparable to that of K+. An electron microscopy study of Ch. album cells revealed that, apart from the usual response to salinity manifested in typical ultrastructural changes of chloroplasts, mitochondria, and the cytosol, the salinity response comprised the enhanced formation of endocytic structures and exosomes and stimulation of autophagy. It is supposed that activation of these processes is related to the removal from the cytoplasm of toxic substances and the cell structures impaired by salt stress conditions. The qualitative and quantitative composition of fatty acids in the lipids of Ch. album organs was hardly affected by NaCl level. These findings are consistent with the high salt tolerance of Ch. album, manifested specifically in retention of growth functions under wide-range variations of NaCl concentration in the nutrient solution and in maintenance of K+, Na+, and Cl content in organs at a constant level characteristic of untreated plants.

Russian Journal of Plant Physiology. 2016;63(6):763-775
pages 763-775 views

Effect of salinity on vegetative growth and sexual reproduction of algae from the genus Ardissonea de Notaris (Bacillariophyta)

Davidovich O., Davidovich N., Podunay Y., Shorenko K., Witkowski A.

摘要

Effect of salinity on vegetative growth and sexual reproduction was investigated in laboratory cultures of a benthic diatom Ardissonea crystallina (C. Agardh) Grunow from the Black Sea and vegetative growth of Ardissonea sp. from the coast of Martinique, the Atlantic Ocean. Typical water salinity in the places where the populations inhabit differs two times. It was shown that the clones of both populations have a broad tolerance and great ability to adapt to changes in salinity. Cells of different size (i.e., in different stages of the life cycle) responded differently to desalination. Salinities optimal for vegetative growth of these species were not the same. Ardissonea from the coast of Martinique was more sensitive to low levels of salinity as compared with A. crystallina from the Black Sea. It was surprising that salinity optimal for vegetative growth and sexual reproduction of the Black Sea species did not coincide with the real salinity level of the Black Sea. Position of physiological optimums indicates an oceanic (or Mediterranean) origin of the Black Sea population of A. crystallina.

Russian Journal of Plant Physiology. 2016;63(6):776-782
pages 776-782 views

Sensitivity of antioxidant status of plant cells to furostanol glycosides

Volkova L., Urmantseva V., Burgutin A., Nosov A.

摘要

The present paper reports that in vitro plant objects (test tube plants and cell cultures), when subjected to furostanol glycosides (FG), underwent nonspecific reactions related to antioxidant status—decrease in peroxidation of lipids (POL) and increase in guaiacol-dependent peroxidase activity. The level of superoxide increased as early as after 5 min from contact with yam (Dioscorea deltoidea Wall) cells with FG. In this case, changes in POL processes and in activities of peroxidase and aldehyde-disposing emzymes were also observed. Upon a short-term cell exposure to FG, the levels of the primary POL products (conjugated dienes) increased, and that of the secondary POL products decreased compared to the control. These events were preceded by a rise in SOD activity and in an antioxidant activity of peroxidase along with a concurrent decrease in its oxidase (prooxidant) activity. The elevated activities of aldehyde-disposing enzymes aldehyde dehydrogenase and aldehyde reductase favored the reduction in the content of the secondary products of POL. Upon a long contact of FG with cells, the effect of FG was seen only at the initial and final phases of the culture growth cycle. Namely, FG diminished the POL level at the exponential growth phase and at the end of the cell degradation phase but had no effect at the stationary phase and the onset of the degradation phase. Therefore, the treatment with FG retarded the cell culture degradation and made the fall in cell viability not so dramatic by the end of the growth cycle. Actually, by the end of the degradation phase, the viability diminished down to 40% in the control but remained at 70% in the FG-treated counterpart.

Russian Journal of Plant Physiology. 2016;63(6):783-789
pages 783-789 views

Chalcone synthase homologous genes cloning and expression pattern in flowering Fagopyrum tataricum Gaertn

Yao P., Zhao H., Luo X., Gao F., Yao H., Li C., Chen H., Wu Q.

摘要

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is highly nutritious and an excellent dietary source of flavonoid compounds. Chalcone synthase (CHS) is the first key enzyme involved in flavonoid biosynthesis. Here, three putative CHS genes (designated as FtCHS1 (GU172165), FtCHS2 (KT284884), and FtCHS3 (KT284885) were isolated from tartary buckwheat. Nucleotide sequence analysis indicated that FtCHS1 and FtCHS2 each contained one intron of 444 bp and 157 bp, respectively. FtCHS3 included two introns, one of 86 bp and another of 73 bp. The results of quantitative real-time PCR (qRT-PCR) showed the FtCHSs expression presented the same pattern in the stems and flowers, with FtCHS1>FtCHS3>FtCHS2. A different tendency was found in leaves, with FtCHS3>FtCHS2>FtCHS1. However, there was no direct correlation between the three CHS expression and total flavonoids. Furthermore, high-performance liquid chromatography (HPLC) performance reveals rutin is the most abundant flavonoid in all tissues, leaves should be the main location for quercetin storage in tartary buckwheat.

Russian Journal of Plant Physiology. 2016;63(6):790-799
pages 790-799 views

Peculiarities of somatic embryogenesis of long-term proliferating embryogenic cell lines of Larix sibirica in vitro

Tretyakova I., Park M., Ivanitskaya A., Oreshkova N.

摘要

Morphogenesis and maturation of somatic embryos, ploidy, and genotyping of cell lines (CL) of embryogenic cultures of Larix sibirica Ledeb. in vitro were investigated during 2–6 years. It was revealed that from 2000 to 11103 globular somatic embryos were formed in proliferating CL. However, the ability of somatic embryos to the maturation and germination decreased. Cytogenetic study of embryonal-suspensor masses (ESM) of Larix sibirica demonstrated that cells of long-term cultivated cultures remained diploid. According to microsatellite analysis, proliferating CL of Siberian larch were characterized by weak allelic variability, and cell line 6 and cloned seedlings of this line were genetically stable and corresponded to the donor tree. Embryogenic cell lines composed the collection bank, which will be successfully used for plantation forest growing.

Russian Journal of Plant Physiology. 2016;63(6):800-810
pages 800-810 views

STENOFOLIA gene and regulation of somatic embryogenesis in Medicago truncatula

Tvorogova V., Fedorova Y., Zhang F., Lutova L.

摘要

Expression of STENOFOLIA (STF) gene was analyzed in different organs of line R-108 barrel medic plants (Medicago truncatula Gaertn.). Maximum levels of STF expression were observed in the generative organs, fruits and flowers, suggesting its involvement in the reproduction process. The local analysis of STF expression during somatic embryogenesis in M. truncatula showed that the STF promoter is activated directly in somatic embryos. Overexpression of STF gene in the calli of R-108 line leads to increased embryogenicity, accompanied by reduced levels of MtGH3.6 gene expression, which is responsible for auxin metabolism, and also reduced expression levels of gene encoding MtHB1 transcription factor. Comparative analysis of MtGH3.6 and MtHB1 gene expression dynamics in the calli of embryogenic 2HA line and non-embryogenic A17 line of M. truncatula showed that these genes demonstrated reduced level of expression in embryogenic calli compared to non-embryogenic. These data suggested that STF stimulates the formation of somatic embryos, directly or indirectly inhibiting the transcription of MtGH3.6, MtHB1 and, probably, many other genes.

Russian Journal of Plant Physiology. 2016;63(6):811-821
pages 811-821 views

Growth of aerial roots with an extensive elongation zone by the example of a hemiepiphyte Monstera deliciosa

Eskov A., Zhukovskaya N., Bystrova E., Orlova Y., Antipina V., Ivanov V.

摘要

We investigated peculiarities of growth of aerial roots in a hemiepiphyte Monstera deliciosa. Aerial roots show low absolute and relative rates of growth and have an extensive elongation zone. In contrast to common roots, cell elongation in the elongation zone of aerial roots may last for 30 days and sometimes longer. The length of cortex cells increases in direct proportion to the distance from the root tip. This means that there is no drastic change in the relative rate of growth associated with transition to elongation characteristic of common roots. Distribution of growth over the elongation zone of aerial roots is irregular. Within the elongation zone, the cells of rhizodermis can divide, and divisions are distributed nonuniformly. The contact between neighboring growing polycytes (cell complexes) is presumably associated with their sliding against one another (intrusive growth). By the example of aerial roots of Monstera deliciosa, we showed a particular type of growth organization in the root with an extensive elongation zone differing from the growth of common roots and resembling the growth of leaves, stems, and fleshy fruit of dicotyledons.

Russian Journal of Plant Physiology. 2016;63(6):822-834
pages 822-834 views

Genome-wide identification and analysis of the U-box family of E3 ligases in grapevine

Yu Y., Li X., Guo D., Zhang H., Li G., Li X., Zhang G.

摘要

E3 ubiquitin ligases play essential roles in determining the specificity of ubiquitination and subsequent protein degradation. The plant U-box (PUB) family of E3 ligases has been implicated in biotic and abiotic stress signaling and developmental events in various species. A comprehensive bioinformatics analysis identified 56 PUB genes in the grapevine (Vitis vinifera L.) genome. Based on conserved motifs, the VvPUB family was classified into seven subclasses. Expansion of this family was driven by chromosomal, segmental, and tandem duplications. Microarray expression profiling revealed that three PUB genes were preferentially expressed in pollen, four in leaf, and five in root. Moreover, a large number of PUB genes were differentially expressed under abiotic stresses and eight PUB genes likely participated in defense against powdery mildew. The microarray expression data were verified by RT-qPCR. Genome-wide identification of VvPUB genes and examination of their expression will give insights into the functions of U-box genes in grapevine.

Russian Journal of Plant Physiology. 2016;63(6):835-848
pages 835-848 views

Leaf acclimation to experimental climate warming in meadow plants of different functional types

Ivanova L., Chanchikova A., Ronzhina D., Zolotareva N., Kosulnikov V., Kadushnikov R., Ivanov L.

摘要

The use of open-top chambers (OTCs) installed in natural plant cover is one of the approaches to study plant responses to climate change. Three OTCs made from polyethylene film were installed on a herbgrass meadow in the subzone of the southern taiga before the beginning of the growing season. A significant increase in the average daily temperature values (by 0.5°C) and the relative humidity (by 10%) compared to control conditions was observed inside the chambers. Plant height, leaf parameters, and the pigments content were studied for six species of meadow plants during the growing season in two variants—inside the chamber and outside the chamber (control); more than 20 quantitative parameters of the mesophyll were studied for four of the species. It was found that the differences in microclimatic conditions had no effect on plant height and leaf area. A slight decrease in the thickness and density of the leaves and an increased water content were noted inside the OTCs. In contrast to weak changes in external leaf parameters, the internal leaf structure and the content of photosynthetic pigments varied considerably. Warming caused the reduction of the content of chlorophyll and carotenoids per unit leaf area in the majority of studied species, except for Veronica chamaedrys L., but the ratio of pigment forms did not change. Changes in the pigments content in the leaf were associated with some structural rearrangements in the mesophyll, whose mechanism depended on the functional properties of the species. Increased size of palisade cells and the number of chloroplasts per cell was noted in the ruderal species (R/CSR-strategist) Taraxacum officinale Wigg. s. l.; the reduction of chlorophyll content per leaf area occurred due to the decrease in chlorophyll content per a single chloroplast. Decreased number of cells and chloroplasts per leaf unit area without any changes in their size was marked for the species with S/CSR strategy Alchemilla vulgaris L. s. 1. and V. chamaedrys L. in a chamber, but the content of chlorophyll per a chloroplast increased. An increase in the number of cells and a simultaneous decrease in their size was observed in CR-strategist Cirsium setosum (Willd.) Bess. inside the OTC; the chlorophyll content per chloroplast did not change. It was concluded that the acclimation of plants to short-term climate warming was associated with the restructuring of leaf mesophyll, whose mechanism depended on the functional properties of the species.

Russian Journal of Plant Physiology. 2016;63(6):849-860
pages 849-860 views

Age-dependent changes of photosynthetic responses induced by electrical signals in wheat seedlings

Vodeneev V., Sherstneva O., Surova L., Semina M., Katicheva L., Sukhov V.

摘要

Electrical signals in plants, namely, the action potential (AP) and variation potential (VP) alter the activity of many processes, including photosynthesis. The functional responses induced by electrical signals vary in direction and amplitude, which might be determined by variable conditions of plants prior to stimulation, by the development stage in particular. In this work, the parameters of VP-induced photosynthetic responses were analyzed at various stages of wheat seedling development. Local wounding of the second leaf in wheat plants induced the propagation of VP and altered the activity of photosynthesis at a distance from the wound location. The amplitude of VP was enlarged when the seedling age increased from 11 to 18 days. The VP-induced photosynthetic response changed with age both qualitatively and quantitatively. The amplitude of VP-induced changes in CO2 assimilation and nonphotochemical quenching (NPQ) increased with age, which might be due to the increase in VP amplitude and associated changes in Ca2+ and H+ concentrations. The quantum yield of photosystem II photoreaction was subject to age-dependent changes: the photochemical quantum yield (γ(PSII)) was found to increase after VP in young leaves, whereas the decline in γ(PSII) was observed after the VP propagation in mature leaves. The results may explain the diversity of photosynthetic responses caused by the electrical signals.

Russian Journal of Plant Physiology. 2016;63(6):861-868
pages 861-868 views

Methods

Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus

Goltsev V., Kalaji H., Paunov M., Bąba W., Horaczek T., Mojski J., Kociel H., Allakhverdiev S.

摘要

Analysis of plant behavior under diverse environmental conditions would be impossible without the methods for adequate assessment of the processes occurring in plants. The photosynthetic apparatus and its reaction to stress factors provide a reliable source of information on plant condition. One of the most informative methods based on monitoring the plant biophysical characteristics consists in detection and analysis of chlorophyll a fluorescence. Fluorescence is mainly emitted by chlorophyll a from the antenna complexes of photosystem II (PSII). However, fluorescence depends not only on the processes in the pigment matrix or PSII reaction centers but also on the redox reactions at the PSII donor and acceptor sides and even in the entire electron transport chain. Presently, a large variety of fluorometers from various manufacturers are available. Although application of such fluorometers does not require specialized training, the correct interpretation of the results would need sufficient knowledge for converting the instrumental data into the information on the condition of analyzed plants. This review is intended for a wide range of specialists employing fluorescence techniques for monitoring the physiological plant condition. It describes in a comprehensible way the theoretical basis of light emission by chlorophyll molecules, the origin of variable fluorescence, as well as relations between the fluorescence parameters, the redox state of electron carriers, and the light reactions of photosynthesis. Approaches to processing and analyzing the fluorescence induction curves are considered in detail on the basis of energy flux theory in the photosynthetic apparatus developed by Prof. Reto J. Strasser and known as a “JIP-test.” The physical meaning and relation of each calculated parameter to certain photosynthetic characteristics are presented, and examples of using these parameters for the assessment of plant physiological condition are outlined.

Russian Journal of Plant Physiology. 2016;63(6):869-893
pages 869-893 views

Short Communications

Effect of inhibitors of two isoprenoid biosynthetic pathways on physiological and biosynthetic characteristics of Dioscorea deltoidea cell suspension culture

Titova M., Khandy M., Konstantinova S., Kulichenko I., Sukhanova E., Kochkin D., Nosov A.

摘要

The effect of phosmidomycin and mevinolin, which inhibit MEP and MVA isoprenoid biosynthetic pathways, respectively, on the growth (biomass accumulation, growth index, specific growth rate), physiological (respiration intensity and ratio between the cytochrome and cyanide-resistant respiration types), and biosynthetic (steroid glycoside biosynthesis) characteristics of the cell suspension culture of Dioscorea deltoidea Wall. has been studied. Both inhibitors decreased the growth index of a cell culture by 20–25%, but their influence on the cell growth dynamics was different. Mevinolin treatment reduced the maximum biomass accumulation by 20% as against the control but did not change the character of a growth curve. Phosmidomycin treatment caused a significant growth delay (a 6-day lag phase) followed by a short active growth period (μ = 0.29 days-1). Treatment of cells with inhibitors did not significantly influence on their total oxygen uptake rate, whose average value at different growth phases was equal to 100–200 mg О2/g of dry cell weight per hour, but cardinally changed characteristics of respiratory metabolism. The inhibitors increased the activity of a cyanide-resistant respiration and decreased the intensity of a cytochrome respiration; each inhibitor worked in its specific manner. In the case of mevinolin, the maximum level of cyanide-resistant respiration (70% of the total respiration intensity) was observed at initial growth phases; during the further cell culture growth, this value gradually reduced to 6–8%. Phosmidomycin treatment caused a reverse dynamics: at the initial growth phases, the contribution of cyanide-resistant respiration was 30%, whereas at the stationary and degradation phases it increased to 50–60%. The treatment of cells with phosmidomycin resulted in a double increase in the content of furostanol glycosides at the stationary growth phase, whereas the use of mevinolin-containing medium reduced the content of these compounds as against the control. Inhibitors also influenced on the ratio of individual glycosides, such as protodioscin, deltoside, and their 26-S-isomers. The obtained results confirm the hypothesis of a possible intermediate exchange between the plastid (MEP) and cytosolic (MVA) isoprenoid biosynthetic pathways; this exchange is directed mainly from the plastids to the cytosol.

Russian Journal of Plant Physiology. 2016;63(6):894-900
pages 894-900 views
##common.cookie##