Universal Method for Stochastic Composite Optimization Problems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a universal method is proposed for the first time for strongly convex problems (this method is continuous with respect to the strong convexity parameter of the smooth part of the functional). It is shown how the universal version of MST can be applied to stochastic optimization problems.

作者简介

A. Gasnikov

Institute for Information Transmission Problems; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: gasnikov.av@mipt.ru
俄罗斯联邦, Moscow, 127051; Dolgoprudnyi, Moscow oblast, 141700

Yu. Nesterov

National Research University Higher School of Economics; Aff4

Email: gasnikov.av@mipt.ru
俄罗斯联邦, Moscow, 101000; Voie du Roman Pays 34, Louvain-la-Neuve, L1.03.01–B-1348

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018