Universal Method for Stochastic Composite Optimization Problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A fast gradient method requiring only one projection is proposed for smooth convex optimization problems. The method has a visual geometric interpretation, so it is called the method of similar triangles (MST). Composite, adaptive, and universal versions of MST are suggested. Based on MST, a universal method is proposed for the first time for strongly convex problems (this method is continuous with respect to the strong convexity parameter of the smooth part of the functional). It is shown how the universal version of MST can be applied to stochastic optimization problems.

Sobre autores

A. Gasnikov

Institute for Information Transmission Problems; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: gasnikov.av@mipt.ru
Rússia, Moscow, 127051; Dolgoprudnyi, Moscow oblast, 141700

Yu. Nesterov

National Research University Higher School of Economics; Aff4

Email: gasnikov.av@mipt.ru
Rússia, Moscow, 101000; Voie du Roman Pays 34, Louvain-la-Neuve, L1.03.01–B-1348

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018