On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
- Авторлар: Kashirin A.A.1, Taltykina M.Y.1
-
Мекемелер:
- Computing Center, Far East Branch
- Шығарылым: Том 57, № 9 (2017)
- Беттер: 1404-1415
- Бөлім: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179356
- DOI: https://doi.org/10.1134/S096554251709007X
- ID: 179356
Дәйексөз келтіру
Аннотация
Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.
Авторлар туралы
A. Kashirin
Computing Center, Far East Branch
Хат алмасуға жауапты Автор.
Email: elomer@mail.ru
Ресей, Khabarovsk, 680000
M. Taltykina
Computing Center, Far East Branch
Email: elomer@mail.ru
Ресей, Khabarovsk, 680000
Қосымша файлдар
