On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
- Авторы: Kashirin A.A.1, Taltykina M.Y.1
-
Учреждения:
- Computing Center, Far East Branch
- Выпуск: Том 57, № 9 (2017)
- Страницы: 1404-1415
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179356
- DOI: https://doi.org/10.1134/S096554251709007X
- ID: 179356
Цитировать
Аннотация
Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.
Об авторах
A. Kashirin
Computing Center, Far East Branch
Автор, ответственный за переписку.
Email: elomer@mail.ru
Россия, Khabarovsk, 680000
M. Taltykina
Computing Center, Far East Branch
Email: elomer@mail.ru
Россия, Khabarovsk, 680000
Дополнительные файлы
