On the Interaction of Boundary Singular Points in the Dirichlet Problem for an Elliptic Equation with Piecewise Constant Coefficients in a Plane Domain
- Авторы: Bogovskii A.M.1, Denisov V.N.1
-
Учреждения:
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- Выпуск: Том 59, № 12 (2019)
- Страницы: 2145-2163
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180950
- DOI: https://doi.org/10.1134/S0965542519110046
- ID: 180950
Цитировать
Аннотация
For an elliptic equation in divergent form with a discontinuous scalar piecewise constant coefficient in an unbounded domain \(\Omega \subset {{\mathbb{R}}^{2}}\) with a piecewise smooth noncompact boundary and smooth discontinuity lines of the coefficient, the \({{L}_{p}}\)-interaction of a finite and an infinite singular points of a weak solution to the Dirichlet problem is studied in a class of functions with the first derivatives from \({{L}_{p}}(\Omega )\) in the entire range of the exponent \(p \in (1,\infty )\).
Ключевые слова
Об авторах
A. Bogovskii
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: abogovski@gmail.com
Россия, Moscow, 119991
V. Denisov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: vdenisov2008@yandex.ru
Россия, Moscow, 119991
Дополнительные файлы
