On the Interaction of Boundary Singular Points in the Dirichlet Problem for an Elliptic Equation with Piecewise Constant Coefficients in a Plane Domain


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For an elliptic equation in divergent form with a discontinuous scalar piecewise constant coefficient in an unbounded domain \(\Omega \subset {{\mathbb{R}}^{2}}\) with a piecewise smooth noncompact boundary and smooth discontinuity lines of the coefficient, the \({{L}_{p}}\)-interaction of a finite and an infinite singular points of a weak solution to the Dirichlet problem is studied in a class of functions with the first derivatives from \({{L}_{p}}(\Omega )\) in the entire range of the exponent \(p \in (1,\infty )\).

Sobre autores

A. Bogovskii

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: abogovski@gmail.com
Rússia, Moscow, 119991

V. Denisov

Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vdenisov2008@yandex.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019