On the Interaction of Boundary Singular Points in the Dirichlet Problem for an Elliptic Equation with Piecewise Constant Coefficients in a Plane Domain
- 作者: Bogovskii A.M.1, Denisov V.N.1
 - 
							隶属关系: 
							
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
 
 - 期: 卷 59, 编号 12 (2019)
 - 页面: 2145-2163
 - 栏目: Article
 - URL: https://journals.rcsi.science/0965-5425/article/view/180950
 - DOI: https://doi.org/10.1134/S0965542519110046
 - ID: 180950
 
如何引用文章
详细
For an elliptic equation in divergent form with a discontinuous scalar piecewise constant coefficient in an unbounded domain \(\Omega \subset {{\mathbb{R}}^{2}}\) with a piecewise smooth noncompact boundary and smooth discontinuity lines of the coefficient, the \({{L}_{p}}\)-interaction of a finite and an infinite singular points of a weak solution to the Dirichlet problem is studied in a class of functions with the first derivatives from \({{L}_{p}}(\Omega )\) in the entire range of the exponent \(p \in (1,\infty )\).
作者简介
A. Bogovskii
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
							编辑信件的主要联系方式.
							Email: abogovski@gmail.com
				                					                																			                												                	俄罗斯联邦, 							Moscow, 119991						
V. Denisov
Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
							编辑信件的主要联系方式.
							Email: vdenisov2008@yandex.ru
				                					                																			                												                	俄罗斯联邦, 							Moscow, 119991						
补充文件
				
			
						
						
					
						
						
				