Fast Gradient Descent for Convex Minimization Problems with an Oracle Producing a (δ, L)-Model of Function at the Requested Point


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A new concept of \((\delta ,L)\)-model of a function that is a generalization of the Devolder–Glineur–Nesterov \((\delta ,L)\)-oracle is proposed. Within this concept, the gradient descent and fast gradient descent methods are constructed and it is shown that constructs of many known methods (composite methods, level methods, conditional gradient and proximal methods) are particular cases of the methods proposed in this paper.

作者简介

A. Gasnikov

State University—Higher School of Economics; Moscow Institute of Physics and Technology; Kharkevich Institute for Information Transmission Problems

Email: atyurin@hse.ru
俄罗斯联邦, Moscow, 125319; Dolgoprudnyi, Moscow oblast, 141700; Moscow, 127051

A. Tyurin

State University—Higher School of Economics

编辑信件的主要联系方式.
Email: atyurin@hse.ru
俄罗斯联邦, Moscow, 125319

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019