Fast Gradient Descent for Convex Minimization Problems with an Oracle Producing a (δ, L)-Model of Function at the Requested Point
- Авторы: Gasnikov A.V.1,2,3, Tyurin A.I.1
-
Учреждения:
- State University—Higher School of Economics
- Moscow Institute of Physics and Technology
- Kharkevich Institute for Information Transmission Problems
- Выпуск: Том 59, № 7 (2019)
- Страницы: 1085-1097
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/180681
- DOI: https://doi.org/10.1134/S0965542519070078
- ID: 180681
Цитировать
Аннотация
A new concept of \((\delta ,L)\)-model of a function that is a generalization of the Devolder–Glineur–Nesterov \((\delta ,L)\)-oracle is proposed. Within this concept, the gradient descent and fast gradient descent methods are constructed and it is shown that constructs of many known methods (composite methods, level methods, conditional gradient and proximal methods) are particular cases of the methods proposed in this paper.
Об авторах
A. Gasnikov
State University—Higher School of Economics; Moscow Institute of Physics and Technology; Kharkevich Institute for Information Transmission Problems
Email: atyurin@hse.ru
Россия, Moscow, 125319; Dolgoprudnyi, Moscow oblast, 141700; Moscow, 127051
A. Tyurin
State University—Higher School of Economics
Автор, ответственный за переписку.
Email: atyurin@hse.ru
Россия, Moscow, 125319
Дополнительные файлы
