Iterative Approximate Factorization of Difference Operators of High-Order Accurate Bicompact Schemes for Multidimensional Nonhomogeneous Quasilinear Hyperbolic Systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For solving equations of multidimensional bicompact schemes, an iterative method based on approximate factorization of their difference operators is proposed. The method is constructed in the general case of systems of two- and three-dimensional quasilinear nonhomogeneous hyperbolic equations. The unconditional convergence of the method is proved as applied to the two-dimensional scalar linear advection equation with a source term depending only on time and space variables. By computing test problems, it is shown that the new iterative method performs much faster than Newton’s method and preserves a high order of accuracy.

Sobre autores

M. Bragin

Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: michael@bragin.cc
Rússia, Dolgoprudnyi, Moscow oblast, 141700

B. Rogov

Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics

Email: michael@bragin.cc
Rússia, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125047

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018