Iterative Approximate Factorization of Difference Operators of High-Order Accurate Bicompact Schemes for Multidimensional Nonhomogeneous Quasilinear Hyperbolic Systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For solving equations of multidimensional bicompact schemes, an iterative method based on approximate factorization of their difference operators is proposed. The method is constructed in the general case of systems of two- and three-dimensional quasilinear nonhomogeneous hyperbolic equations. The unconditional convergence of the method is proved as applied to the two-dimensional scalar linear advection equation with a source term depending only on time and space variables. By computing test problems, it is shown that the new iterative method performs much faster than Newton’s method and preserves a high order of accuracy.

作者简介

M. Bragin

Moscow Institute of Physics and Technology (State University)

编辑信件的主要联系方式.
Email: michael@bragin.cc
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700

B. Rogov

Moscow Institute of Physics and Technology (State University); Keldysh Institute of Applied Mathematics

Email: michael@bragin.cc
俄罗斯联邦, Dolgoprudnyi, Moscow oblast, 141700; Moscow, 125047

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018