On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The accuracy of the discontinuous Galerkin method of the third-order approximation on smooth solutions in the calculation of discontinuous solutions of a quasilinear hyperbolic system of conservation laws with shock waves propagating with a variable velocity is studied. As an example, the approximation of the system of conservation laws of shallow water theory is considered. On the example of this system, it is shown that, like the TVD and WENO schemes of increased order of approximation on smooth solutions, the discontinuous Galerkin method, despite its high accuracy on smooth solutions and in the localization of shock waves, reduces its order of convergence to the first order in the shock wave influence domain.

Sobre autores

M. Ladonkina

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ladonkina@imamod.ru
Rússia, Moscow, 125047

O. Neklyudova

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: ladonkina@imamod.ru
Rússia, Novosibirsk, 630090

V. Ostapenko

Novosibirsk State University

Email: ladonkina@imamod.ru
Rússia, Novosibirsk, 630090

V. Tishkin

Novosibirsk State University

Email: ladonkina@imamod.ru
Rússia, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018