On the Accuracy of the Discontinuous Galerkin Method in Calculation of Shock Waves


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The accuracy of the discontinuous Galerkin method of the third-order approximation on smooth solutions in the calculation of discontinuous solutions of a quasilinear hyperbolic system of conservation laws with shock waves propagating with a variable velocity is studied. As an example, the approximation of the system of conservation laws of shallow water theory is considered. On the example of this system, it is shown that, like the TVD and WENO schemes of increased order of approximation on smooth solutions, the discontinuous Galerkin method, despite its high accuracy on smooth solutions and in the localization of shock waves, reduces its order of convergence to the first order in the shock wave influence domain.

Авторлар туралы

M. Ladonkina

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ladonkina@imamod.ru
Ресей, Moscow, 125047

O. Neklyudova

Lavrentyev Institute of Hydrodynamics, Siberian Branch, Russian Academy of Sciences

Email: ladonkina@imamod.ru
Ресей, Novosibirsk, 630090

V. Ostapenko

Novosibirsk State University

Email: ladonkina@imamod.ru
Ресей, Novosibirsk, 630090

V. Tishkin

Novosibirsk State University

Email: ladonkina@imamod.ru
Ресей, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018