On the linear classification of even and odd permutation matrices and the complexity of computing the permanent


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of linear classification of the parity of permutation matrices is studied. This problem is related to the analysis of complexity of a class of algorithms designed for computing the permanent of a matrix that generalizes the Kasteleyn algorithm. Exponential lower bounds on the magnitude of the coefficients of the functional that classifies the even and odd permutation matrices in the case of the field of real numbers and similar linear lower bounds on the rank of the classifying map for the case of the field of characteristic 2 are obtained.

Sobre autores

A. Babenko

Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: alina.v.babenko@gmail.com
Rússia, Dolgopudnyi, Moscow oblast, 141701

M. Vyalyi

Dorodnicyn Computing Center

Email: alina.v.babenko@gmail.com
Rússia, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017