On the linear classification of even and odd permutation matrices and the complexity of computing the permanent


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of linear classification of the parity of permutation matrices is studied. This problem is related to the analysis of complexity of a class of algorithms designed for computing the permanent of a matrix that generalizes the Kasteleyn algorithm. Exponential lower bounds on the magnitude of the coefficients of the functional that classifies the even and odd permutation matrices in the case of the field of real numbers and similar linear lower bounds on the rank of the classifying map for the case of the field of characteristic 2 are obtained.

作者简介

A. Babenko

Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: alina.v.babenko@gmail.com
俄罗斯联邦, Dolgopudnyi, Moscow oblast, 141701

M. Vyalyi

Dorodnicyn Computing Center

Email: alina.v.babenko@gmail.com
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017