On the linear classification of even and odd permutation matrices and the complexity of computing the permanent
- 作者: Babenko A.V.1, Vyalyi M.N.2
-
隶属关系:
- Moscow Institute of Physics and Technology
- Dorodnicyn Computing Center
- 期: 卷 57, 编号 2 (2017)
- 页面: 362-371
- 栏目: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/178967
- DOI: https://doi.org/10.1134/S0965542517020038
- ID: 178967
如何引用文章
详细
The problem of linear classification of the parity of permutation matrices is studied. This problem is related to the analysis of complexity of a class of algorithms designed for computing the permanent of a matrix that generalizes the Kasteleyn algorithm. Exponential lower bounds on the magnitude of the coefficients of the functional that classifies the even and odd permutation matrices in the case of the field of real numbers and similar linear lower bounds on the rank of the classifying map for the case of the field of characteristic 2 are obtained.
作者简介
A. Babenko
Moscow Institute of Physics and Technology
编辑信件的主要联系方式.
Email: alina.v.babenko@gmail.com
俄罗斯联邦, Dolgopudnyi, Moscow oblast, 141701
M. Vyalyi
Dorodnicyn Computing Center
Email: alina.v.babenko@gmail.com
俄罗斯联邦, Moscow, 119333
补充文件
