An Algorithm for Source Reconstruction in Nonlinear Shallow-Water Equations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A numerical algorithm is proposed to solve the source reconstruction problem for a system of nonlinear shallow-water equations using the dynamics of water surface perturbation measured at a finite number of spatial points and/or over a part of the surface at a fixed time. The combined inverse problem under study is reduced to the minimization of an objective functional characterizing the quadratic deviation of simulated data from measured data (a misfit function). An explicit expression for the gradient of the misfit function is obtained. The direct and conjugate problems within the framework of shallow-water equations are solved by the finite volume method. The numerical results are analyzed and compared with experimental data.

About the authors

S. I. Kabanikhin

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: kabanikhin@sscc.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

O. I. Krivorotko

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: krivorotko.olya@mail.ru
Russian Federation, Novosibirsk, 630090; Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.