An Algorithm for Source Reconstruction in Nonlinear Shallow-Water Equations
- Авторы: Kabanikhin S.I.1,2, Krivorotko O.I.1,2
-
Учреждения:
- Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Выпуск: Том 58, № 8 (2018)
- Страницы: 1334-1343
- Раздел: Article
- URL: https://journals.rcsi.science/0965-5425/article/view/179796
- DOI: https://doi.org/10.1134/S0965542518080109
- ID: 179796
Цитировать
Аннотация
A numerical algorithm is proposed to solve the source reconstruction problem for a system of nonlinear shallow-water equations using the dynamics of water surface perturbation measured at a finite number of spatial points and/or over a part of the surface at a fixed time. The combined inverse problem under study is reduced to the minimization of an objective functional characterizing the quadratic deviation of simulated data from measured data (a misfit function). An explicit expression for the gradient of the misfit function is obtained. The direct and conjugate problems within the framework of shallow-water equations are solved by the finite volume method. The numerical results are analyzed and compared with experimental data.
Об авторах
S. Kabanikhin
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Автор, ответственный за переписку.
Email: kabanikhin@sscc.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
O. Krivorotko
Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Автор, ответственный за переписку.
Email: krivorotko.olya@mail.ru
Россия, Novosibirsk, 630090; Novosibirsk, 630090
Дополнительные файлы
