A conjugate subgradient algorithm with adaptive preconditioning for the least absolute shrinkage and selection operator minimization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper describes a new efficient conjugate subgradient algorithm which minimizes a convex function containing a least squares fidelity term and an absolute value regularization term. This method is successfully applied to the inversion of ill-conditioned linear problems, in particular for computed tomography with the dictionary learning method. A comparison with other state-of-art methods shows a significant reduction of the number of iterations, which makes this algorithm appealing for practical use.

作者简介

A. Mirone

European Synchrotron Radiation Facility

编辑信件的主要联系方式.
Email: mirone@ESRF.FR
法国, Grenoble Cedex, F-38043

P. Paleo

European Synchrotron Radiation Facility

Email: mirone@ESRF.FR
法国, Grenoble Cedex, F-38043

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017