A conjugate subgradient algorithm with adaptive preconditioning for the least absolute shrinkage and selection operator minimization


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper describes a new efficient conjugate subgradient algorithm which minimizes a convex function containing a least squares fidelity term and an absolute value regularization term. This method is successfully applied to the inversion of ill-conditioned linear problems, in particular for computed tomography with the dictionary learning method. A comparison with other state-of-art methods shows a significant reduction of the number of iterations, which makes this algorithm appealing for practical use.

Sobre autores

A. Mirone

European Synchrotron Radiation Facility

Autor responsável pela correspondência
Email: mirone@ESRF.FR
França, Grenoble Cedex, F-38043

P. Paleo

European Synchrotron Radiation Facility

Email: mirone@ESRF.FR
França, Grenoble Cedex, F-38043

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017