РОЛЬ ОКСИТОЦИНЕРГИЧЕСКОЙ СИСТЕМЫ В КОРРЕКЦИИ НАРУШЕНИЙ НЕЙРОГЕНЕЗА, ВЫЗВАННЫХ СТРЕССОМ РАННЕГО ПЕРИОДА ЖИЗНИ: ИССЛЕДОВАНИЕ IN VITRO

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Стресс раннего периода жизни (СРПЖ) вызывает долговременные изменения в нейропластичности, что ассоциируется с нарушением работы окситоцинергической системы. Однако молекулярные механизмы этих нарушений и возможности их коррекции остаются недостаточно изученными. В данной работе исследовано влияние СРПЖ, экзогенного окситоцина (ОХТ) и антагониста рецепторов окситоцина (атосибана) на клеточные процессы, связанные с гомеостазом и нейрогенезом в нейросферах in vitro. Нейросферы выделялись из субвентрикулярной зоны и пириформной коры головного мозга мышей линии CD 1 (возраст P60) контрольной и СРПЖ-групп с последующим воздействием окситоцином (1 мкМ) или атосибаном (1 мкМ). Далее количественно оценивались уровень апоптоза, степень повреждения ДНК (H2AX) и экспрессия генов-маркеров нейрогенеза PSA-NCAM, Dcx, Tbr1, Gad67 и Vglut1 (qRT-PCR). Полученные данные показали, что СРПЖ увеличивал уровень апоптоза клеток и снижал экспрессию генов PSA-NCAM, Dcx и Gad67, при этом окситоцин приводил к уменьшению количества апоптотических клеток, но не оказывал влияния на экспрессию изучаемых генов, за исключением подавления Tbr1. В контрольных культурах окситоцин повышал экспрессию PSA-NCAM и Tbr1, одновременно снижая уровень Gad67, что может отражать его регулирующее влияние на баланс возбуждающей и тормозной передачи в развивающейся нейрональной сети. Стимуляция атосибаном при этом приводила к усилению апоптоза в контрольных образцах, подчеркивая роль окситоцинергической активности в поддержании жизнеспособности нейронов даже при отсутствии стресс-факторов. Полученные данные свидетельствуют о том, что СРПЖ вызывает долгосрочные нарушения нейрогенеза и клеточного гомеостаза, а модулирующее действие ОХТ зависит от исходного состояния клеток. Эти результаты подчеркивают потенциальную роль окситоцинергической системы в коррекции последствий СРПЖ.

Об авторах

Е. Д Хилажева

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого

Красноярск, Россия

А. Н Лукьянчук

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого; Российский центр неврологии и нейронаук

Красноярск, Россия; Москва, Россия

Ю. А Панина

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого

Красноярск, Россия

О. Л Лопатина

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого

Красноярск, Россия

Н. А Малиновская

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого

Красноярск, Россия

А. В Благова

Российский центр неврологии и нейронаук

Москва, Россия

А. Б Салмина

Красноярский государственный медицинский университет им. проф. Войно-Ясенецкого; Российский центр неврологии и нейронаук

Красноярск, Россия; Москва, Россия

Ю. К Комлева

Российский центр неврологии и нейронаук

Email: yuliakomleva@mail.ru
Москва, Россия

Список литературы

  1. Higashida H, Lopatina O, Yoshihara T, Pichugina YA, Soumarokov AA, Munesue T, Minabe Y, Kikuchi M, Ono Y, Korshunova N, Salmina AB (2010) Oxytocin signal and social behaviour: comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J Neuroendocrinol 22:373–379. https://doi.org/10.1111/j.1365-2826.2010.01976.x
  2. Lee H-J, Macbeth AH, Pagani JH, Scott Young W (2009) Oxytocin: The great facilitator of life. Prog Neurobiol 88:127–151. https://doi.org/10.1016/j.pneurobio.2009.04.001
  3. Cid-Jofré V, Moreno M, Reyes-Parada M, Renard GM (2021) Role of Oxytocin and Vasopressin in Neuropsychiatric Disorders: Therapeutic Potential of Agonists and Antagonists. Int J Mol Sci 22:12077. https://doi.org/10.3390/ijms222112077
  4. Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B (2015) The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 753:209–228. https://doi.org/10.1016/j.ejphar.2014.07.045
  5. Walter MH, Abele H, Plappert CF (2021) The Role of Oxytocin and the Effect of Stress During Childbirth: Neurobiological Basics and Implications for Mother and Child. Front Endocrinol 12. https://doi.org/10.3389/fendo.2021.742236
  6. Carter CS, Kenkel WM, MacLean EL, Wilson SR, Perkeybile AM, Yee JR, Ferris CF, Nazarloo HP, Porges SW, Davis JM, Connelly JJ, Kingsbury MA (2020) Is Oxytocin “Nature’s Medicine”? Pharmacol Rev 72: 829–861. https://doi.org/10.1124/pr.120.019398
  7. Campbell A (2010) Oxytocin and human social behavior. Personal Soc Psychol Rev Off J Soc Personal Soc Psychol Inc 14: 281–295. https://doi.org/10.1177/1088868310363594
  8. Takayanagi Y, Onaka T (2022) Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 23: 150. https://doi.org/10.3390/ijms23010150
  9. Froemke RC, Young LJ (2021) Oxytocin, Neural Plasticity, and Social Behavior. Annu Rev Neurosci 44: 359–381. https://doi.org/10.1146/annurev-neuro-102320-102847
  10. Ellenbogen MA (2018) Oxytocin and Facial Emotion Recognition. In: Hurlemann R, Grinevich V (eds) Behavioral Pharmacology of Neuropeptides: Oxytocin. Springer International Publishing, Cham. 349–374.
  11. Di Simplicio M, Harmer CJ (2016) Oxytocin and emotion processing. J Psychopharmacol Oxf Engl 30: 1156–1159. https://doi.org/10.1177/0269881116641872
  12. Jin Y, Song D, Yan Y, Quan Z, Qing H (2023) The Role of Oxytocin in Early-Life-Stress-Related Neuropsychiatric Disorders. Int J Mol Sci 24: 10430. https://doi.org/10.3390/ijms241310430
  13. Ellis BJ, Horn AJ, Carter CS, van IJzendoorn MH, Bakermans-Kranenburg MJ (2021) Developmental programming of oxytocin through variation in early-life stress: Four meta-analyses and a theoretical reinterpretation. Clin Psychol Rev 86: 101985. https://doi.org/10.1016/j.cpr.2021.101985
  14. Agorastos A, Pervanidou P, Chrousos GP, Baker DG (2019) Developmental Trajectories of Early Life Stress and Trauma: A Narrative Review on Neurobiological Aspects Beyond Stress System Dysregulation. Front Psychiatry 10: 118. https://doi.org/10.3389/fpsyt.2019.00118
  15. Makris G, Eleftheriades A, Pervanidou P (2023) Early Life Stress, Hormones, and Neurodevelopmental Disorders. Horm Res Paediatr 96: 17–24. https://doi.org/10.1159/000523942
  16. Huang Z, Jordan JD, Zhang Q (2023) Early life adversity as a risk factor for cognitive impairment and Alzheimer’s disease. Transl Neurodegener 12: 25. https://doi.org/10.1186/s40035-023-00355-z
  17. Short AK, Baram TZ (2019) Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol 15: 657–669. https://doi.org/10.1038/s41582-019-0246-5
  18. Kuhn HG, Skau S, Nyberg J (2024) A lifetime perspective on risk factors for cognitive decline with a special focus on early events. Cereb Circ – Cogn Behav 6: 100217. https://doi.org/10.1016/j.cccb.2024.100217
  19. Hellwig AF, Wroblewski KL, Krol KM, Connelly JJ, Allen JP (2024) Epigenetic regulation of the oxytocin system as an indicator of adaptation to over-controlling parenting and psychosocial functioning in adulthood. Psychoneuroendocrinology 168: 107123. https://doi.org/10.1016/j.psyneuen.2024.107123
  20. Uvnäs-Moberg K, Gross MM, Calleja-Agius J, Turner JD (2024) The Yin and Yang of the oxytocin and stress systems: opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front Endocrinol 15: 1272270. https://doi.org/10.3389/fendo.2024.1272270
  21. Neumann ID (2002) Chapter 12 Involvement of the brain oxytocin system in stress coping: interactions with the hypothalamo-pituitary-adrenal axis. In: Progress in Brain Research. Elsevier. 147–162.
  22. Wang S-C, Lin C-C, Chen C-C, Tzeng N-S, Liu Y-P (2018) Effects of Oxytocin on Fear Memory and Neuroinflammation in a Rodent Model of Posttraumatic Stress Disorder. Int J Mol Sci 19: 3848. https://doi.org/10.3390/ijms19123848
  23. Shi C, Wu X, Gao Y, Ma D, Yang J, Ji M (2024) Oxytocin attenuates neuroinflammation-induced anxiety through restoration of excitation and inhibition balance in the anterior cingulate cortex in mice. J Affect Disord 362: 341–355. https://doi.org/10.1016/j.jad.2024.05.144
  24. Bakos J, Srancikova A, Havranek T, Bacova Z (2018) Molecular Mechanisms of Oxytocin Signaling at the Synaptic Connection. Neural Plast 2018: 4864107. https://doi.org/10.1155/2018/4864107
  25. Cattaneo MG, Lucci G, Vicentini LM (2009) Oxytocin stimulates in vitro angiogenesis via a Pyk-2/Src-dependent mechanism. Exp Cell Res 315: 3210–3219. https://doi.org/10.1016/j.yexcr.2009.06.022
  26. Salmina AB, Gorina YV, Komleva YK, Panina YA, Malinovskaya NA, Lopatina OL (2021) Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 9: 1092. https://doi.org/10.3390/biomedicines9091092
  27. Jiang J, Yang M, Tian M, Chen Z, Xiao L, Gong Y (2023) Intertwined associations between oxytocin, immune system and major depressive disorder. Biomed Pharmacother 163: 114852. https://doi.org/10.1016/j.biopha.2023.114852
  28. Yoshida M, Takayanagi Y, Inoue K, Kimura T, Young LJ, Onaka T, Nishimori K (2009) Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J Neurosci Off J Soc Neurosci 29: 2259–2271. https://doi.org/10.1523/JNEUROSCI.5593-08.2009
  29. Mairesse J, Gatta E, Reynaert M-L, Marrocco J, Morley-Fletcher S, Soichot M, Deruyter L, Camp GV, Bouwalerh H, Fagioli F, Pittaluga A, Allorge D, Nicoletti F, Maccari S (2015) Activation of presynaptic oxytocin receptors enhances glutamate release in the ventral hippocampus of prenatally restraint stressed rats. Psychoneuroendocrinology 62: 36–46. https://doi.org/10.1016/j.psyneuen.2015.07.005
  30. Onaka T, Takayanagi Y (2021) The oxytocin system and early-life experience-dependent plastic changes. J Neuroendocrinol 33: e13049. https://doi.org/10.1111/jne.13049
  31. Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P (2022) The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 15. https://doi.org/10.3389/fnmol.2022.1002846
  32. Abellán-Álvaro M, Teruel-Sanchis A, Madeira MF, Lanuza E, Santos M, Agustín-Pavón C (2024) Doublecortin-immunoreactive neurons in the piriform cortex are sensitive to the long lasting effects of early life stress. Front Neurosci 18. https://doi.org/10.3389/fnins.2024.1446912
  33. McKay EC, Counts SE (2020) Oxytocin Receptor Signaling in Vascular Function and Stroke. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.574499
  34. Fleck L, Buss C, Bauer M, Stein M, Mekle R, Kock L, Klawitter H, Godara M, Ramler J, Entringer S, Endres M, Heim C (2025) Early-Life Adversity Predicts Markers of Aging-Related Neuroinflammation, Neurodegeneration, and Cognitive Impairment in Women. Ann Neurol 97: 642–656. https://doi.org/10.1002/ana.27161
  35. Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, Imamura Kawasawa Y, Vaidya VA, Gaspar P (2020) Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry 25: 1159–1174. https://doi.org/10.1038/s41380-019-0493-2
  36. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.1262
  37. Jurek B, Neumann ID (2018) The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 98: 1805–1908. https://doi.org/10.1152/physrev.00031.2017
  38. Bazhanova ED, Teply DL, Khuzhakhmetova LK, Anisimov VN (2020) AKT, ERK and NFKB Signaling Pathwaysin Neurons of Hypothalamic Supraoptic and Paraventricular Nuclei in AgingTransgenic Mice with HER2/neu Overexpression. Zurn Evol Biokhem Physiol 56(6): 447–455.
  39. Noiseux N, Borie M, Desnoyers A, Menaouar A, Stevens LM, Mansour S, Danalache BA, Roy D-C, Jankowski M, Gutkowska J (2012) Preconditioning of Stem Cells by Oxytocin to Improve Their Therapeutic Potential. Endocrinology 153: 5361–5372. https://doi.org/10.1210/en.2012-1402
  40. Wu G, Ou Y, Feng Z, Xiong Z, Li K, Che M, Qi S, Zhou M (2024) Oxytocin attenuates hypothalamic injury-induced cognitive dysfunction by inhibiting hippocampal ERK signaling and Aβ deposition. Transl Psychiatry 14: 208. https://doi.org/10.1038/s41398-024-02930-y
  41. Zhou M-F, Feng Z-P, Ou Y-C, Peng J-J, Li K, Gong H-D, Qiu B-H, Liu Y-W, Wang Y-J, Qi S-T (2019) Endoplasmic reticulum stress induces apoptosis of arginine vasopressin neurons in central diabetes insipidus via PI3K/Akt pathway. CNS Neurosci Ther 25: 562–574. https://doi.org/10.1111/cns.13089
  42. Garrido-Urbani S, Deblon N, Poher AL, Caillon A, Ropraz P, Rohner-Jeanrenaud F, Altirriba J (2018) Inhibitory role of oxytocin on TNFα expression assessed in vitro and in vivo. Diabetes Metab 44: 292–295. https://doi.org/10.1016/j.diabet.2017.10.004
  43. Inoue T, Yamakage H, Tanaka M, Kusakabe T, Shimatsu A, Satoh-Asahara N (2019) Oxytocin Suppresses Inflammatory Responses Induced by Lipopolysaccharide through Inhibition of the eIF2α–ATF4 Pathway in Mouse Microglia. Cells 8: 527. https://doi.org/10.3390/cells8060527
  44. Mehdi SF, Pusapati S, Khenhrani RR, Farooqi MS, Sarwar S, Alnasarat A, Mathur N, Metz CN, LeRoith D, Tracey KJ, Yang H, Brownstein MJ, Roth J (2022) Oxytocin and Related Peptide Hormones: Candidate Anti-Inflammatory Therapy in Early Stages of Sepsis. Front Immunol 13: 864007. https://doi.org/10.3389/fimmu.2022.864007
  45. Nawijn L, Krzyzewska IM, van Zuiden M, Henneman P, Koch SBJ, Mul AN, Frijling JL, Veltman DJ, Mannens MM a. M, Olff M (2019) Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls. Eur Neuropsychopharmacol J 9: 147–155. https://doi.org/10.1016/j.euroneuro.2018.10.006
  46. Carmassi C, Marazziti D, Mucci F, Della Vecchia A, Barberi FM, Baroni S, Giannaccini G, Palego L, Massimetti G, Dell’Osso L (2021) Decreased Plasma Oxytocin Levels in Patients With PTSD. Front Psychol 12. https://doi.org/10.3389/fpsyg.2021.612338
  47. Apazoglou K, Adouan W, Aubry J-M, Dayer A, Aybek S (2018) Increased methylation of the oxytocin receptor gene in motor functional neurological disorder: a preliminary study. J Neurol Neurosurg Psychiatry 89: 552–554. https://doi.org/10.1136/jnnp-2017-316469
  48. Lee H, King AP, Li Y, Seng JS (2022) Oxytocin receptor gene, post-traumatic stress disorder and dissociation in a community sample of European American women. BJPsych Open 8: e104. https://doi.org/10.1192/bjo.2022.74
  49. Reiner I, Frieling H, Beutel M, Michal M (2016) Gene–Environment Interaction of the Oxytocin Receptor Gene Polymorphism (rs53576) and Unresolved Attachment Status Predict Depersonalization Symptoms: An Exploratory Study. Psychol Stud 61: 295–300. https://doi.org/10.1007/s12646-016-0378-2
  50. Pekarek BT, Hunt PJ, Arenkiel BR (2020) Oxytocin and Sensory Network Plasticity. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.00030
  51. Rajamannar P, Blechman J, Raz O, Levkowitz G (2025) Neuropeptide oxytocin facilitates its own brain-to-periphery uptake. Cell Rep 44. https://doi.org/10.1016/j.celrep.2025.115491
  52. Buemann B (2023) Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 14. https://doi.org/10.3389/fpsyg.2023.1250745
  53. Leuner B, Caponiti JM, Gould E (2012) Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus 22: 861–868. https://doi.org/10.1002/hipo.20947
  54. Lin Y-T, Chen C-C, Huang C-C, Nishimori K, Hsu K-S (2017) Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun 8: 537. https://doi.org/10.1038/s41467-017-00675-5
  55. Pekarek BT, Hunt PJ, Arenkiel BR (2020) Oxytocin and Sensory Network Plasticity. Front Neurosci 14. https://doi.org/10.3389/fnins.2020.00030
  56. Jones KL, Zhou M, Jhaveri DJ (2022) Dissecting the role of adult hippocampal neurogenesis towards resilience versus susceptibility to stress-related mood disorders. NPJ Sci Learn 7: 16. https://doi.org/10.1038/s41539-022-00133-y
  57. Schoenfeld TJ, Gould E (2012) Stress, stress hormones, and adult neurogenesis. Exp Neurol 233: 12–21. https://doi.org/10.1016/j.expneurol.2011.01.008
  58. Segi-Nishida E, Suzuki K (2025) Regulation of adult-born and mature neurons in stress response and antidepressant action in the dentate gyrus of the hippocampus. Neurosci Res 211: 10–15. https://doi.org/10.1016/j.neures.2022.08.010
  59. Janetsian-Fritz SS, Timme NM, Timm MM, McCane AM, Baucum II AJ, O’Donnell BF, Lapish CC (2018) Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry 8: 71. https://doi.org/10.1038/s41398-018-0119-5
  60. Ohta K-I, Suzuki S, Warita K, Sumitani K, Tenkumo C, Ozawa T, Ujihara H, Kusaka T, Miki T (2020) The effects of early life stress on the excitatory/inhibitory balance of the medial prefrontal cortex. Behav Brain Res 379: 112306. https://doi.org/10.1016/j.bbr.2019.112306
  61. Horiai M, Otsuka A, Hidema S, Hiraoka Y, Hayashi R, Miyazaki S, Furuse T, Mizukami H, Teruyama R, Tamura M, Bito H, Maejima Y, Shimomura K, Nishimori K (2020) Targeting oxytocin receptor (Oxtr)-expressing neurons in the lateral septum to restore social novelty in autism spectrum disorder mouse models. Sci Rep 10: 22173. https://doi.org/10.1038/s41598-020-79109-0
  62. Mitre M, Marlin BJ, Schiavo JK, Morina E, Norden SE, Hackett TA, Aoki CJ, Chao MV, Froemke RC (2016) A Distributed Network for Social Cognition Enriched for Oxytocin Receptors. J Neurosci Off J Soc Neurosci 36: 2517–2535. https://doi.org/10.1523/JNEUROSCI.2409-15.2016
  63. Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, Ben-Ari Y, Khazipov R (2006) Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science 314: 1788–1792. https://doi.org/10.1126/science.1133212
  64. Maniezzi C, Talpo F, Spaiardi P, Toselli M, Biella G (2019) Oxytocin Increases Phasic and Tonic GABAergic Transmission in CA1 Region of Mouse Hippocampus. Front Cell Neurosci 13. https://doi.org/10.3389/fncel.2019.00178
  65. Havranek T, Bacova Z, Bakos J (2024) Oxytocin, GABA, and dopamine interplay in autism. Endocr Regul 58: 105–114. https://doi.org/10.2478/enr-2024-0012
  66. Zhang S, Zhang Y-D, Shi D-D, Wang Z (2023) Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 13: 216. https://doi.org/10.1186/s13578-023-01173-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».