Separate and combined effects of chronic sleep deprivation and high-fat diet on metabolic parameters and neurobehavioral functions in rats

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Among the negative consequences of chronic lack of sleep, obesity and its associated metabolic and neurobehavioral disorders occupy a significant position. Chronic lack of sleep leads to increased appetite and a preference for high-calorie foods, thereby provoking a higher risk of developing obesity. The cause-effect relations between short sleep duration and the pathophysiology of obesity, as well as the effects of their combined impact on the organism, remain poorly studied. The aim of this study was to compare the effects of sleep restriction (SR) and high-fat diet (HFD)-induced obesity, both separately and combined, on metabolic parameters and neurobehavioral functions in rats. In the study a model of chronic SR (3 hours of sleep deprivation on a moving platform and 1 hour of rest daily for 5 days) and HFD feeding (8 weeks) was used in male Wistar rats. Control animals received standard dry feed. It has been established that SR leads to an increase in body weight and adipose tissue and impaired glucose tolerance, and with the combination of SR and HFD, the spectrum of metabolic and hormonal disorders expands, including decreased insulin sensitivity, as indicated by an increase in insulin levels and the insulin resistance index. We have demonstrated for the first time that when SR is combined with HFD, neurocognitive indicators, in particular working memory, are also impaired, as evidenced by a decrease in spontaneous alternation in the Y-shaped maze test, while in groups with only SR or HFD, these indicators did not change. It was found that impaired working memory in the SR+HFD group may be associated with dysregulation of the dopaminergic system in the prefrontal cortex. The combined effects of SR and HFD may be considered as a significant risk factor for the development of metabolic disorders and cognitive deficits.

作者简介

M. Chernyshev

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: netmisha@mail.ru
Saint Petersburg, Russia

M. Pazi

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Saint Petersburg, Russia

D. Belan

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Saint Petersburg, Russia

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Saint Petersburg, Russia

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Saint Petersburg, Russia

I. Ekimova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Saint Petersburg, Russia

参考

  1. Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57(2): 195–206. https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P
  2. Mutti C, Malagutti G, Maraglino V, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Rosenzweig I, Parrino L (2023) Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 15: 4488. https://doi.org/10.3390/nu15204488
  3. Reutrakul S, Van Cauter E (2018) Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 84: 56–66. https://doi.org/10.1016/j.metabol.2018.02.010
  4. Rogers EM, Banks NF, Jenkins NDM (2024) The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review. Diabet Metab Res Rev 40(2): e3667. https://doi.org/10.1002/dmrr.3667
  5. Wang W, Chen Z, Zhang W, Yuan R, Sun Y, Yao Q, Lu J, Zheng J (2024) Association between obesity and sleep disorder in the elderly: evidence from NHANES 2005–2018. Front Nutr 11: 1401477. https://doi.org/10.3389/fnut.2024.1401477
  6. NCD Risk Factor Collaboration (2024) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. The Lancet 403: 1027–1050. https://doi.org/10.1016/S0140-6736(23)02750-2
  7. Mokrysheva NG (2022) Fighting obesity as a direction of national health care development. Obe Metab 19: 4–6. https://doi.org/10.14341/omet12865
  8. Van Egmond LT, Meth EMS, Engström J, Ilemosoglou M, Keller JA, Vogel H, Benedict C (2023) Effects of acute sleep loss on leptin, ghrelin, and adiponectin in adults with healthy weight and obesity: A laboratory study. Obesity 31: 635–641. https://doi.org/10.1002/oby.23616
  9. Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF (2023) Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 15: 2749. https://doi.org/10.3390/nu15122749
  10. Luppi M, Cerri M, Martelli D, Tupone D, Del Vecchio F, Di Cristoforo A, Perez E, Zamboni G, Amici R (2014) Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Behav Brain Res 258: 145–152. https://doi.org/10.1016/j.bbr.2013.10.014
  11. Rodrigues GD, Fiorelli EM, Furlan L, Montano N, Tobaldini E (2021) Obesity and sleep disturbances: The “chicken or the egg” question. Eur J Intern Med 92: 11–16. https://doi.org/10.1016/j.ejim.2021.04.017
  12. Duan D, Kim LJ, Jun JC, Polotsky VY (2023) Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann N Y Acad Sci 1519: 94–117. https://doi.org/10.1111/nyas.14926
  13. Kanoski SE, Davidson TL (2010) Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Process 36: 313–319. https://doi.org/10.1037/a0017228
  14. Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol Behav 103: 59–68. https://doi.org/10.1016/j.physbeh.2010.12.003
  15. Abbott KN, Arnott CK, Westbrook RF, Tran DMD (2019) The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neurosci Biobehav Rev 107: 399–421. https://doi.org/10.1016/j.neubiorev.2019.08.010
  16. Jagust W, Harvey D, Mungas D, Haan M (2005) Central Obesity and the Aging Brain. Arch Neurol 62(10): 1545–1548. https://doi.org/10.1001/archneur.62.10.1545
  17. Ledreux A, Wang X, Schultzberg M, Granholm A-C, Freeman LR (2016) Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats. Behav Brain Res 312: 294–304. https://doi.org/10.1016/j.bbr.2016.06.012
  18. Kroener S, Chandler LJ, Phillips PEM, Seamans JK (2009) Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex. PLoS One 4: e6507. https://doi.org/10.1371/journal.pone.0006507
  19. Vander Weele CM, Siciliano CA, Matthews GA, Namburi P, Izadmehr EM, Espinel IC, Nieh EH, Schut EHS, Padilla-Coreano N, Burgos-Robles A, Chang C-J, Kimchi EY, Beyeler A, Wichmann R, Wildes CP, Tye KM (2018) Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 563: 397–401. https://doi.org/10.1038/s41586-018-0682-1
  20. Украинцева ЮВ, Левкович КМ (2022) Негативное влияние нарушений сна на рабочую память может быть опосредовано изменениями углеводного обмена. Журн неврол психиатр им СС Корсакова 122(5-2): 1–17. [Ukraintseva YuV, Liaukovich KM (2022) The negative impact of sleep disorders on working memory may be mediated by changes in carbohydrate metabolism. Zh Nevrol Psikhiatr im SS Korsakova 122(5-2): 1–17. (In Russ)]. https://doi.org/10.17116/jnevro202212205211
  21. MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16: 252–264. https://doi.org/10.1038/mp.2010.80
  22. Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15: 181–192. https://doi.org/10.1038/nrn3677
  23. Antonova KV, Tanashyan MM, Raskurazhev AA, Spryshkov NE, Panina AA, Lagoda OV, Ametov AS, Troshina EA (2024) Obesity and the nervous system. Obe Metab 21: 68–78. https://doi.org/10.14341/omet13019
  24. Faith MS, Matz PE, Jorge MA (2002) Obesity–depression associations in the population. J Psychosom Res 53: 935–942. https://doi.org/10.1016/S0022-3999(02)00308-2
  25. Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18: 1085–1088. https://doi.org/10.1002/hipo.20470
  26. Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD, Baillie GS (2019) A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 9: 141. https://doi.org/10.1038/s41398-019-0470-1
  27. Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L (2022) Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 100: 155–171. https://doi.org/10.1016/j.bbi.2021.11.018
  28. Sinha R (2018) Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol 131: 5–13. https://doi.org/10.1016/j.biopsycho.2017.05.001
  29. Hennecke E, Lange D, Steenbergen F, Fronczek-Poncelet J, Elmenhorst D, Bauer A, Aeschbach D, Elmenhorst E (2021) Adverse interaction effects of chronic and acute sleep deficits on spatial working memory but not on verbal working memory or declarative memory. J Sleep Res 30(4): e13225. https://doi.org/10.1111/jsr.13225
  30. Chernyshev MV, Guseev MA, Ekimova IV (2023) Effect of Acute and Chronic Sleep Deficit on Working and Long-Term Memory in Rats. J Evol Biochem Physiol 59: 2129–2140. https://doi.org/10.1134/S0022093023060182
  31. Гузеев МА, Курмазов НС, Симонова ВВ, Пастухов ЮФ, Екимова ИВ (2021) Создание модели хронического недосыпания для трансляционных исследований. Журн неврол психиатр им СС Корсакова 121(4-2): 6–13. [Guzeev MA, Kurmazov NS, Simonova VV, Pastukhov YuF, Ekimova IV (2021) Modeling of chronic sleep restriction for translational studies. Zhurn Nevrol Psikhiatr im SS Korsakova 121(4-2): 6–13. (In Russ)]. https://doi.org/10.17116/jnevro20211214026
  32. Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO (2025) Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 26: 703. https://doi.org/10.3390/ijms26020703
  33. Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65: 269–277. https://doi.org/10.18926/AMO/46853
  34. Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates, 6th ed. Elsevier. Amsterdam.
  35. Pazi MB, Belan DV, Komarova EY, Ekimova IV (2024) Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson’s Disease. Int J Mol Sci 25: 3951. https://doi.org/10.3390/ijms25073951
  36. Shinlapawittayatorn K, Pongkan W, Sivasinprasasn S, Chattipakorn SC, Chattipakorn N (2022) Sexual dimorphism in cardiometabolic and cardiac mitochondrial function in obese rats following sex hormone deprivation. Nutr Diabetes 12: 11. https://doi.org/10.1038/s41387-022-00189-0
  37. Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn MD, Chattipakorn SC (2020) Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet–induced obese condition. Nutrition 69: 110576. https://doi.org/10.1016/j.nut.2019.110576
  38. Lin C, Wu TT-L, Chang C, Cheng J, Tong Y (2018) Changes of Bladder M1,3 Muscarinic Receptor Expression in Rats Fed with Short-Term/Long-Term High-Fat Diets. LUTS: Lower Urinary Tract Symptoms 10: 315–319. https://doi.org/10.1111/luts.12171
  39. Milanova IV, Kalsbeek MJT, Wang X-L, Korpel NL, Stenvers DJ, Wolff SEC, de Goede P, Heijboer AC, Fliers E, la Fleur SE, Kalsbeek A, Yi C-X (2019) Diet-Induced Obesity Disturbs Microglial Immunometabolism in a Time-of-Day Manner. Front Endocrinol (Lausanne) 10: 424. https://doi.org/10.3389/fendo.2019.00424
  40. Yu C, Wan X, Li D, Guo X (2023) Reduction of obesity and hepatic adiposity in high-fat diet-induced rats by besunyen slimming tea. Heliyon 9: e17383. https://doi.org/10.1016/j.heliyon.2023.e17383
  41. Derkach KV, Sukhov IB, Bondareva VM, Shpakov AO (2018) The effect of Metformin on metabolic parameters and hypothalamic signaling systems in rats with obesity induced by a high-carbohydrate/high-fat diet. Adv Gerontol 31: 139–146.
  42. Derkach KV, Bakhtyukov AA, Romanova IV, Zorina II, Bayunova LV, Bondareva VM, Morina IYu, Kumar Roy V, Shpakov AO (2020) The effect of metformin treatment on the basal and gonadotropin-stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia 52(11): e13816. https://doi.org/10.1111/and.13816
  43. Barf RP, Van Dijk G, Scheurink AJW, Hoffmann K, Novati A, Hulshof HJ, Fuchs E, Meerlo P (2012) Metabolic consequences of chronic sleep restriction in rats: Changes in body weight regulation and energy expenditure. Physiol Behav 107: 322–328. https://doi.org/10.1016/j.physbeh.2012.09.005
  44. Moraes DA, Venancio DP, Suchecki D (2014) Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav 66: 705–712. https://doi.org/10.1016/j.yhbeh.2014.08.015
  45. Venancio DP, Suchecki D (2015) Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines. Brain Behav Immun 47: 109–117. https://doi.org/10.1016/j.bbi.2014.12.002
  46. Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 28: 1437–1448. https://doi.org/10.1111/j.1460-9568.2008.06422.x
  47. Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang MM, Reid S, Lai D, Davis JG, Baur JA, Veasey S (2014) Extended Wakefulness: Compromised Metabolics in and Degeneration of Locus Ceruleus Neurons. J Neurosci 34: 4418–4431. https://doi.org/10.1523/JNEUROSCI.5025-12.2014
  48. Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S (2016) Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons. Sleep 39: 1601–1611. https://doi.org/10.5665/sleep.6030
  49. Pazi MB, Ekimova IV (2024) Intranasal administration of GRP78 protein (HSPA5) counteracts the neurodegeneration in the locus coeruleus in a model of chronic sleep restriction in rats. J Evol Biochem Phys 60(4): 1630–1641. https://doi.org/10.1134/S002209302404029X
  50. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science (1979) 342: 373–377. https://doi.org/10.1126/science.1241224
  51. Lapshina KV, Ekimova IV (2024) Aquaporin-4 and Parkinson’s Disease. Int J Mol Sci 25: 1672. https://doi.org/10.3390/ijms25031672
  52. Shpakov AO, Derkach KV, Berstein LM (2015) Brain Signaling Systems in the Type 2 Diabetes and Metabolic Syndrome: Promising Target to Treat and Prevent These Diseases. Future Sci OA 1(3): FSO25. https://doi.org/10.4155/fso.15.23
  53. Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14: e0213779. https://doi.org/10.1371/journal.pone.0213779
  54. Ahnaou A, Drinkenburg WHIM (2011) Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behav Brain Res 221: 246–252. https://doi.org/10.1016/j.bbr.2011.03.004
  55. Wan Y, Gao W, Zhou K, Liu X, Jiang W, Xue R, Wu W (2022) Role of IGF-1 in neuroinflammation and cognition deficits induced by sleep deprivation. Neurosci Lett 776: 136575. https://doi.org/10.1016/j.neulet.2022.136575
  56. Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F (2021) Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 22: 12366. https://doi.org/10.3390/ijms222212366

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».