Исследование влияния хронического недосыпания и высокожировой диеты раздельно и совместно на метаболические показатели и нейроповеденческие функции у крыс
- Авторы: Чернышев М.В.1, Пази М.Б.1, Белан Д.В.1, Шпаков А.О.1, Деркач К.В.1, Екимова И.В.1
-
Учреждения:
- Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
- Выпуск: Том 111, № 9 (2025)
- Страницы: 1453-1471
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://journals.rcsi.science/0869-8139/article/view/352690
- DOI: https://doi.org/10.7868/S2658655X25090029
- ID: 352690
Цитировать
Аннотация
Об авторах
М. В. Чернышев
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН
Email: netmisha@mail.ru
Санкт-Петербург, Россия
М. Б. Пази
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАНСанкт-Петербург, Россия
Д. В. Белан
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАНСанкт-Петербург, Россия
А. О. Шпаков
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАНСанкт-Петербург, Россия
К. В. Деркач
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАНСанкт-Петербург, Россия
И. В. Екимова
Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАНСанкт-Петербург, Россия
Список литературы
- Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57(2): 195–206. https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P
- Mutti C, Malagutti G, Maraglino V, Misirocchi F, Zilioli A, Rausa F, Pizzarotti S, Spallazzi M, Rosenzweig I, Parrino L (2023) Sleep Pathologies and Eating Disorders: A Crossroad for Neurology, Psychiatry and Nutrition. Nutrients 15: 4488. https://doi.org/10.3390/nu15204488
- Reutrakul S, Van Cauter E (2018) Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 84: 56–66. https://doi.org/10.1016/j.metabol.2018.02.010
- Rogers EM, Banks NF, Jenkins NDM (2024) The effects of sleep disruption on metabolism, hunger, and satiety, and the influence of psychosocial stress and exercise: A narrative review. Diabet Metab Res Rev 40(2): e3667. https://doi.org/10.1002/dmrr.3667
- Wang W, Chen Z, Zhang W, Yuan R, Sun Y, Yao Q, Lu J, Zheng J (2024) Association between obesity and sleep disorder in the elderly: evidence from NHANES 2005–2018. Front Nutr 11: 1401477. https://doi.org/10.3389/fnut.2024.1401477
- NCD Risk Factor Collaboration (2024) Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. The Lancet 403: 1027–1050. https://doi.org/10.1016/S0140-6736(23)02750-2
- Mokrysheva NG (2022) Fighting obesity as a direction of national health care development. Obe Metab 19: 4–6. https://doi.org/10.14341/omet12865
- Van Egmond LT, Meth EMS, Engström J, Ilemosoglou M, Keller JA, Vogel H, Benedict C (2023) Effects of acute sleep loss on leptin, ghrelin, and adiponectin in adults with healthy weight and obesity: A laboratory study. Obesity 31: 635–641. https://doi.org/10.1002/oby.23616
- Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Tornero-Aguilera JF (2023) Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 15: 2749. https://doi.org/10.3390/nu15122749
- Luppi M, Cerri M, Martelli D, Tupone D, Del Vecchio F, Di Cristoforo A, Perez E, Zamboni G, Amici R (2014) Waking and sleeping in the rat made obese through a high-fat hypercaloric diet. Behav Brain Res 258: 145–152. https://doi.org/10.1016/j.bbr.2013.10.014
- Rodrigues GD, Fiorelli EM, Furlan L, Montano N, Tobaldini E (2021) Obesity and sleep disturbances: The “chicken or the egg” question. Eur J Intern Med 92: 11–16. https://doi.org/10.1016/j.ejim.2021.04.017
- Duan D, Kim LJ, Jun JC, Polotsky VY (2023) Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann N Y Acad Sci 1519: 94–117. https://doi.org/10.1111/nyas.14926
- Kanoski SE, Davidson TL (2010) Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. J Exp Psychol Anim Behav Process 36: 313–319. https://doi.org/10.1037/a0017228
- Kanoski SE, Davidson TL (2011) Western diet consumption and cognitive impairment: Links to hippocampal dysfunction and obesity. Physiol Behav 103: 59–68. https://doi.org/10.1016/j.physbeh.2010.12.003
- Abbott KN, Arnott CK, Westbrook RF, Tran DMD (2019) The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neurosci Biobehav Rev 107: 399–421. https://doi.org/10.1016/j.neubiorev.2019.08.010
- Jagust W, Harvey D, Mungas D, Haan M (2005) Central Obesity and the Aging Brain. Arch Neurol 62(10): 1545–1548. https://doi.org/10.1001/archneur.62.10.1545
- Ledreux A, Wang X, Schultzberg M, Granholm A-C, Freeman LR (2016) Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats. Behav Brain Res 312: 294–304. https://doi.org/10.1016/j.bbr.2016.06.012
- Kroener S, Chandler LJ, Phillips PEM, Seamans JK (2009) Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex. PLoS One 4: e6507. https://doi.org/10.1371/journal.pone.0006507
- Vander Weele CM, Siciliano CA, Matthews GA, Namburi P, Izadmehr EM, Espinel IC, Nieh EH, Schut EHS, Padilla-Coreano N, Burgos-Robles A, Chang C-J, Kimchi EY, Beyeler A, Wichmann R, Wildes CP, Tye KM (2018) Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli. Nature 563: 397–401. https://doi.org/10.1038/s41586-018-0682-1
- Украинцева ЮВ, Левкович КМ (2022) Негативное влияние нарушений сна на рабочую память может быть опосредовано изменениями углеводного обмена. Журн неврол психиатр им СС Корсакова 122(5-2): 1–17. [Ukraintseva YuV, Liaukovich KM (2022) The negative impact of sleep disorders on working memory may be mediated by changes in carbohydrate metabolism. Zh Nevrol Psikhiatr im SS Korsakova 122(5-2): 1–17. (In Russ)]. https://doi.org/10.17116/jnevro202212205211
- MacQueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research? Mol Psychiatry 16: 252–264. https://doi.org/10.1038/mp.2010.80
- Bannerman DM, Sprengel R, Sanderson DJ, McHugh SB, Rawlins JNP, Monyer H, Seeburg PH (2014) Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci 15: 181–192. https://doi.org/10.1038/nrn3677
- Antonova KV, Tanashyan MM, Raskurazhev AA, Spryshkov NE, Panina AA, Lagoda OV, Ametov AS, Troshina EA (2024) Obesity and the nervous system. Obe Metab 21: 68–78. https://doi.org/10.14341/omet13019
- Faith MS, Matz PE, Jorge MA (2002) Obesity–depression associations in the population. J Psychosom Res 53: 935–942. https://doi.org/10.1016/S0022-3999(02)00308-2
- Stranahan AM, Norman ED, Lee K, Cutler RG, Telljohann RS, Egan JM, Mattson MP (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18: 1085–1088. https://doi.org/10.1002/hipo.20470
- Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD, Baillie GS (2019) A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 9: 141. https://doi.org/10.1038/s41398-019-0470-1
- Zhuang H, Yao X, Li H, Li Q, Yang C, Wang C, Xu D, Xiao Y, Gao Y, Gao J, Bi M, Liu R, Teng G, Liu L (2022) Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun 100: 155–171. https://doi.org/10.1016/j.bbi.2021.11.018
- Sinha R (2018) Role of addiction and stress neurobiology on food intake and obesity. Biol Psychol 131: 5–13. https://doi.org/10.1016/j.biopsycho.2017.05.001
- Hennecke E, Lange D, Steenbergen F, Fronczek-Poncelet J, Elmenhorst D, Bauer A, Aeschbach D, Elmenhorst E (2021) Adverse interaction effects of chronic and acute sleep deficits on spatial working memory but not on verbal working memory or declarative memory. J Sleep Res 30(4): e13225. https://doi.org/10.1111/jsr.13225
- Chernyshev MV, Guseev MA, Ekimova IV (2023) Effect of Acute and Chronic Sleep Deficit on Working and Long-Term Memory in Rats. J Evol Biochem Physiol 59: 2129–2140. https://doi.org/10.1134/S0022093023060182
- Гузеев МА, Курмазов НС, Симонова ВВ, Пастухов ЮФ, Екимова ИВ (2021) Создание модели хронического недосыпания для трансляционных исследований. Журн неврол психиатр им СС Корсакова 121(4-2): 6–13. [Guzeev MA, Kurmazov NS, Simonova VV, Pastukhov YuF, Ekimova IV (2021) Modeling of chronic sleep restriction for translational studies. Zhurn Nevrol Psikhiatr im SS Korsakova 121(4-2): 6–13. (In Russ)]. https://doi.org/10.17116/jnevro20211214026
- Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO (2025) Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 26: 703. https://doi.org/10.3390/ijms26020703
- Hidaka N, Suemaru K, Takechi K, Li B, Araki H (2011) Inhibitory effects of valproate on impairment of Y-maze alternation behavior induced by repeated electroconvulsive seizures and c-Fos protein levels in rat brains. Acta Med Okayama 65: 269–277. https://doi.org/10.18926/AMO/46853
- Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates, 6th ed. Elsevier. Amsterdam.
- Pazi MB, Belan DV, Komarova EY, Ekimova IV (2024) Intranasal Administration of GRP78 Protein (HSPA5) Confers Neuroprotection in a Lactacystin-Induced Rat Model of Parkinson’s Disease. Int J Mol Sci 25: 3951. https://doi.org/10.3390/ijms25073951
- Shinlapawittayatorn K, Pongkan W, Sivasinprasasn S, Chattipakorn SC, Chattipakorn N (2022) Sexual dimorphism in cardiometabolic and cardiac mitochondrial function in obese rats following sex hormone deprivation. Nutr Diabetes 12: 11. https://doi.org/10.1038/s41387-022-00189-0
- Saiyasit N, Chunchai T, Prus D, Suparan K, Pittayapong P, Apaijai N, Pratchayasakul W, Sripetchwandee J, Chattipakorn MD, Chattipakorn SC (2020) Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet–induced obese condition. Nutrition 69: 110576. https://doi.org/10.1016/j.nut.2019.110576
- Lin C, Wu TT-L, Chang C, Cheng J, Tong Y (2018) Changes of Bladder M1,3 Muscarinic Receptor Expression in Rats Fed with Short-Term/Long-Term High-Fat Diets. LUTS: Lower Urinary Tract Symptoms 10: 315–319. https://doi.org/10.1111/luts.12171
- Milanova IV, Kalsbeek MJT, Wang X-L, Korpel NL, Stenvers DJ, Wolff SEC, de Goede P, Heijboer AC, Fliers E, la Fleur SE, Kalsbeek A, Yi C-X (2019) Diet-Induced Obesity Disturbs Microglial Immunometabolism in a Time-of-Day Manner. Front Endocrinol (Lausanne) 10: 424. https://doi.org/10.3389/fendo.2019.00424
- Yu C, Wan X, Li D, Guo X (2023) Reduction of obesity and hepatic adiposity in high-fat diet-induced rats by besunyen slimming tea. Heliyon 9: e17383. https://doi.org/10.1016/j.heliyon.2023.e17383
- Derkach KV, Sukhov IB, Bondareva VM, Shpakov AO (2018) The effect of Metformin on metabolic parameters and hypothalamic signaling systems in rats with obesity induced by a high-carbohydrate/high-fat diet. Adv Gerontol 31: 139–146.
- Derkach KV, Bakhtyukov AA, Romanova IV, Zorina II, Bayunova LV, Bondareva VM, Morina IYu, Kumar Roy V, Shpakov AO (2020) The effect of metformin treatment on the basal and gonadotropin-stimulated steroidogenesis in male rats with type 2 diabetes mellitus. Andrologia 52(11): e13816. https://doi.org/10.1111/and.13816
- Barf RP, Van Dijk G, Scheurink AJW, Hoffmann K, Novati A, Hulshof HJ, Fuchs E, Meerlo P (2012) Metabolic consequences of chronic sleep restriction in rats: Changes in body weight regulation and energy expenditure. Physiol Behav 107: 322–328. https://doi.org/10.1016/j.physbeh.2012.09.005
- Moraes DA, Venancio DP, Suchecki D (2014) Sleep deprivation alters energy homeostasis through non-compensatory alterations in hypothalamic insulin receptors in Wistar rats. Horm Behav 66: 705–712. https://doi.org/10.1016/j.yhbeh.2014.08.015
- Venancio DP, Suchecki D (2015) Prolonged REM sleep restriction induces metabolic syndrome-related changes: Mediation by pro-inflammatory cytokines. Brain Behav Immun 47: 109–117. https://doi.org/10.1016/j.bbi.2014.12.002
- Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 28: 1437–1448. https://doi.org/10.1111/j.1460-9568.2008.06422.x
- Zhang J, Zhu Y, Zhan G, Fenik P, Panossian L, Wang MM, Reid S, Lai D, Davis JG, Baur JA, Veasey S (2014) Extended Wakefulness: Compromised Metabolics in and Degeneration of Locus Ceruleus Neurons. J Neurosci 34: 4418–4431. https://doi.org/10.1523/JNEUROSCI.5025-12.2014
- Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S (2016) Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons. Sleep 39: 1601–1611. https://doi.org/10.5665/sleep.6030
- Pazi MB, Ekimova IV (2024) Intranasal administration of GRP78 protein (HSPA5) counteracts the neurodegeneration in the locus coeruleus in a model of chronic sleep restriction in rats. J Evol Biochem Phys 60(4): 1630–1641. https://doi.org/10.1134/S002209302404029X
- Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep Drives Metabolite Clearance from the Adult Brain. Science (1979) 342: 373–377. https://doi.org/10.1126/science.1241224
- Lapshina KV, Ekimova IV (2024) Aquaporin-4 and Parkinson’s Disease. Int J Mol Sci 25: 1672. https://doi.org/10.3390/ijms25031672
- Shpakov AO, Derkach KV, Berstein LM (2015) Brain Signaling Systems in the Type 2 Diabetes and Metabolic Syndrome: Promising Target to Treat and Prevent These Diseases. Future Sci OA 1(3): FSO25. https://doi.org/10.4155/fso.15.23
- Derkach K, Zakharova I, Zorina I, Bakhtyukov A, Romanova I, Bayunova L, Shpakov A (2019) The evidence of metabolic-improving effect of metformin in Ay/a mice with genetically-induced melanocortin obesity and the contribution of hypothalamic mechanisms to this effect. PLoS One 14: e0213779. https://doi.org/10.1371/journal.pone.0213779
- Ahnaou A, Drinkenburg WHIM (2011) Disruption of glycogen synthase kinase-3-beta activity leads to abnormalities in physiological measures in mice. Behav Brain Res 221: 246–252. https://doi.org/10.1016/j.bbr.2011.03.004
- Wan Y, Gao W, Zhou K, Liu X, Jiang W, Xue R, Wu W (2022) Role of IGF-1 in neuroinflammation and cognition deficits induced by sleep deprivation. Neurosci Lett 776: 136575. https://doi.org/10.1016/j.neulet.2022.136575
- Pignalosa FC, Desiderio A, Mirra P, Nigro C, Perruolo G, Ulianich L, Formisano P, Beguinot F, Miele C, Napoli R, Fiory F (2021) Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. Int J Mol Sci 22: 12366. https://doi.org/10.3390/ijms222212366
Дополнительные файлы



