Relationship between Obesity Phenotype and Hormonal Disorders

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In studies in recent years, changes underlying metabolically unhealthy visceral obesity and leading to the development of cardiometabolic risk factors are defined as a state of uncontrolled secretion of adipokines and cytokines by increased visceral adipose tissue. Meanwhile, deviations in the production of a number of hormones can cause an increase in the amount of fat in the body and contribute to the formation of different phenotypes of obesity with different options for the distribution of adipose tissue. This review summarizes current information on key hormones whose level changes may contribute to obesity and affect body composition. It also summarizes hormonal changes resulting from the development of obesity (ghrelin, leptin, adiponectin, estrogens, androgens and others). A feature of this review is a comparative analysis of sex differences in the role and contribution of hormones to energy metabolism, the pathogenesis of obesity and the formation of different phenotypes. Identifying hormonal profiles that characterize different obesity phenotypes will improve diagnostics, prognosis, and personalized treatment of this pandemic.

About the authors

A. Yu Babenko

Almazov National Medical Research Center

Email: alina_babenko@mail.ru
Saint-Petersburg, Russia

References

  1. Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O'Donnell CJ, Benjamin EJ, Fox CS (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116(11): 1234–1241. https://doi.org/10.1161/CIRCULATIONAHA.107.710509
  2. Kullberg J, Hedström A, Brandberg J, Strand R, Johansson L, Bergström G, Ahlström H (2017) Automated analysis of liver fat, muscle and adipose tissue distribution from CT suitable for largescale studies. Sci Rep 7(1): 10425. https://doi.org/10.1038/s41598-017-08925-8
  3. Soliman A (2025) Endocrine Disruption in Obesity: Mechanisms and Clinical Implications. Conference: Endocrine Grand rounds HMC. https://doi.org/10.13140/RG.2.2.29511.20646
  4. Kurylowicz A (2021) Endocrine Disorders Accompanying Obesity – Effect or Cause? In: Rao V, Rao L (eds) Role of Obesity in Human Health and Disease. Intech Open, Toronto. https://doi.org/10.5772/intechopen.98793
  5. Park H-K, Ahima RS (2023) Endocrine disorders associated with obesity. Best Pract Res Clin Obstetr Gynaecol 90: 102394. https://doi.org/10.1016/j.bpobgyn.2023.102394
  6. Camilleri M, Acosta A (2016) Gastrointestinal traits: individualizing therapy for obesity with drugs and devices. Gastrointest Endoscopy 83(1): 48–56. https://doi.org/10.1016/j.gie.2015.08.007
  7. Бабенко АЮ, Матвеев ГА (2022) Дисбаланс гормонов, вовлеченных в регуляцию энергетического баланса у больных ожирением – изучение вклада в нарушение пищевого поведения и метаболических параметров. Рос физиол журн им ИМ Сеченова 108(9): 1159–1174.
  8. Babenko AYu, Matveev GA (2022) Imbalance of Hormones Involved in Energy Balance Regulation in Obese Patients: a Study of Its Relationship with Disturbed Eating Behavior and Abnormal Metabolic Parameters. Russ J Physiol 108(9): 1159–1174. (In Russ). https://doi.org/10.31857/S0869813922090047
  9. Schneider G, Kirschner MA, Berkowitz R, Ertel NH (1979) Increased estrogen production in obese men. J Clin Endocrinol Metab 48(4): 633–638. https://doi.org/10.1210/jcem-48-4-633
  10. Tchernof A, Despres JP, Dupont A, Belanger A, Nadeau A, Prud'homme D, Moorjani S, Lupien PJ, Labrie F (1995) Relation of steroid hormones to glucose tolerance and plasma insulin levels in men. Importance of visceral adipose tissue. Diabetes Care 18(3): 292–299. https://doi.org/10.2337/diacare.18.3.292
  11. Biason-Lauber A, Lang-Muritano M (2022) Estrogens: Two nuclear receptors, multiple possibilities. Mol Cell Endocrinol 554: 111710. https://doi.org/10.1016/j.mce.2022.111710
  12. Bardhi O, Palmer BF, Clegg DJ (2023) The evolutionary impact and influence of oestrogens on adipose tissue structure and function. Phil Trans R Soc B 378: 20220207. https://doi.org/10.1098/rstb.2022.0207
  13. Ribas V, Nguyen MT, Henstridge DC, Nguyen AK, Beaven SW, Watt MJ, Hevener AL (2010) Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalphadeficient mice. Am J Physiol Endocrinol Metab 298(2): E304–E319. https://doi.org/10.1152/ajpendo.00504.2009
  14. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A 97(23): 12729–12734. https://doi.org/10.1073/pnas.97.23.12729
  15. Correa-Rodríguez M, Schmidt-Rio Valle J, González-Jiménez E, Rueda-Medina B (2018) Estrogen Receptor 1 (ESR1) Gene Polymorphisms and Obesity Phenotypes in a Population of Young Adults. Clin Nurs Res 27(8): 936–949. https://doi.org/10.1177/1054773817715707
  16. Yang S, Gong Z, Liu Z, Wei M, Xue L, Vlantis AC, Zhahg Y, Chan YY, Hasselt CA, Zeng X, Qiu S, Tahg N, Du J, Wei W, Tong MC, Chen GG (2021) Differential effects of estrogen receptor alpha and beta on endogenous ligands of peroxisome proliferator-activated receptor gamma in papillary thyroid cancer. Front Endocrinol (Lausanne) 12: 708248. https://doi.org/10.3389/fendo.2021.708248
  17. Huang WY, Sun PM (2021) Estrogen receptor-associated receptor α and peroxisome proliferatoractivated receptor γ in metabolism and disease (review). Mol Med Rep 23: 156. https://doi.org/10.3892/mmr.2020.11795
  18. Steiner BM, Berry DC (2022) The regulation of adipose tissue health by estrogens. Front Endocrinol (Lausanne) 13: 889923. https://doi.org/10.3389/fendo.2022.889923
  19. Wells JC (2007) Sexual dimorphism of body composition. Best Pract Res Clin Endocrinol Metab 21(3): 415–430. https://doi.org/10.1016/j.beem.2007.04.007
  20. Karastergiou K, Fried SK, Xie H, Lee MJ, Divoux A, Rosencrantz MA, Chang RJ, Smith SR (2013) Distinct developmental signatures of human abdominal and gluteal subcutaneous adipose tissue depots. J Clin Endocrinol Metab 98(1): 362–371. https://doi.org/10.1210/jc.2012-2953
  21. Palmer BF, Clegg DJ (2015) The sexual dimorphism of obesity. Mol Cell Endocrinol 402: 113–119. https://doi.org/10.1016/j.mce.2014.11.029
  22. Jankowski M, Rachelska G, Donghao W, McCann SM, Gutkowska J (2001) Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc Natl Acad Sci U S A 98(20): 11765–11770. https://doi.org/10.1073/pnas.201394198
  23. Wang TJ, Larson MG, Levy D, Leip EP, Benjamin EJ, Wilson PWF, Sutherland P, Omland T, Vasan RS (2002) Impact of age and sex on plasma natriuretic peptide levels in healthy adults Am J Cardiol 90: 254–258. https://doi.org/10.1016/S0002-9149(02)02464-5
  24. Collins S (2014) A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev Endocrinol 10: 157–163. https://doi.org/10.1038/nrendo.2013.234
  25. Hetemäki N, Mikkola TS, Tikkanen MJ, Wang F, Hämäläinen E, Turpeinen U, Haanpää M, Vihma V, Savolainen-Peltonen H (2021) Adipose tissue estrogen production and metabolism in premenopausal women. J Steroid Biochem Mol Biol 209: 105849. https://doi.org/10.1016/j.jsbmb.2021.105849
  26. Katzer K, Hill JL, McIver KB, Foster MT (2021) Lipedema and the potential role of estrogen in excessive adipose tissue accumulation. Int J Mol Sci 22: 11720. https://doi.org/10.3390/ijms222111720
  27. Cao L Choi EY, Liu X, Martin A, Wang C, Xu X, During MJ (2011) White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab14: 324–338. https://doi.org/10.1016/j.cmet.2011.06.020
  28. Kaikaew K, Grefhorst A, Visser JA (2021) Sex Differences in Brown Adipose Tissue Function: Sex Hormones, Glucocorticoids, and Their Crosstalk. Front Endocrinol 12: 652444. https://doi.org/10.3389/fendo.2021.652444
  29. Sanchez-Delgado G, Martinez-Tellez B, Acosta FM, Virtue S, Vidal-Puig A, Gil A, LlamasElvira JM, Ruiz JR (2021) Brown Adipose Tissue Volume and Fat Content Are Positively Associated With Whole-Body Adiposity in Young Men – Not in Women. Diabetes 70 (7): 1473–1485. https://doi.org/10.2337/db21-0011
  30. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2): 20–44. https://doi.org/10.1016/j.cell.2013.12.012
  31. Mauvais-Jarvis F, Clegg DJ, Hevener AL (2013) The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34(3): 309–338. https://doi.org/10.1210/er.2012-1055
  32. Leeners B, Geary N, Tobler PN, Asarian L (2017) Ovarian hormones and obesity. Human Reproduct Update 23(3): 300–321. https://doi.org/10.1093/humupd/dmw045
  33. Day DS, Gozansky WS, Van Pelt RE, Schwartz RS, Kohrt WM (2005) Sex hormone suppression reduces resting energy expenditure and {beta}-adrenergic support of resting energy expenditure. J Clin Endocrinol Metab 90: 3312–3317. https://doi.org/10.1210/jc.2004-1344
  34. Musatov S, Chen W, Pfaff DW, Mobbs CV, Yang X-J, Clegg DJ, Kaplitt MG, Ogawa S (2007) Silencing of estrogen receptor alpha in the ventromedial nucleus of hypothalamus leads to metabolic syndrome. Proc Natl Acad Sci U S A 104: 2501–2506. https://doi.org/10.1073/pnas.0610787104
  35. Xu Y, Nedungadi TP, Zhu L, Sobhani N, Irani BG, Davis KE, Zhang X, Zou F, Gent LM, Hahner LD, Khan SA, Elias CF, Elmquist JK, Clegg DJ (2011) Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metabol 14(4): 453–465. https://doi.org/10.1016/j.cmet.2011.08.009
  36. Благосклонная ЯВ (1959) Эффект препаратов половых гормонов на гиперхолестеринемию. Пробл эндокринол гормонотерап 5: 49–54.
  37. Blagoslonnaya YaV (1959) The effect of sex hormone preparations on hypercholesterolemia. Probl endocrinol hormone therapy 5: 49–54. (In Russ).
  38. Phillips GB, Jing T, Heymsfield S (2008) Does insulin resistance, visceral adiposity, or a sex hormone alteration underlie the metabolic syndrome? Studies in women. Metabolism 57(6): 838–844.
  39. McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41(1): 36–48. https://doi.org/10.1016/j.immuni.2014.05.010
  40. Tiano JP, Mauvais-Jarvis F (2012) Importance of oestrogen receptors to preserve functional betacell mass in diabetes. Nat Rev Endocrinol 8(6): 342–351. https://doi.org/10.1038/nrendo.2011.242
  41. Abdulnour J, Doucet E, Brochu M, Lavoie J-M, Strychar I, Rabasa-Lhoret R, Prud'homme D (2012) The effect of the menopausal transition on body composition and cardiometabolic risk factors: a Montreal-Ottawa New Emerging Team group study. Menopause 19: 760–767. https://doi.org/10.1097/gme.0b013e318240f6f3
  42. Hodis HN, Mack WJ, Henderson VW, Shoupe D, Budoff MJ, Hwang-Levine J, Li Y, Feng M, Dustin L, Kono N, Stanczyk FZ, Selzer RH, Azen SP; ELITE Res Group (2016) Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N Engl J Med 374(13): 1221–1231. https://doi.org/10.1056/NEJMoa1505241
  43. Manson JE, Kaunitz AM (2016) Menopause management – getting clinical care back on track N Engl J Med 374: 803–806. https://doi.org/10.1056/NEJMp1514242
  44. Smith GI, Reeds DN, Okunade AL, Patterson BW, Mittendorfer B (2014) Systemic delivery of estradiol, but not testosterone or progesterone, alters very low density lipoprotein-triglyceride kinetics in postmenopausal women. J Clin Endocrinol Metab 99: E1306–E1310. https://doi.org/10.1210/jc.2013-4470
  45. Vieira Potter VJ , Strissel KJ, Xie C, Chang E, Bennett G, Defuria J, Obin MS, Greenberg AS (2012) Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity. Endocrinology 153: 4266–4277. https://doi.org/10.1210/en.2011-2006
  46. Pinnick KE, Neville MJ, Fielding BA, Frayn KN, Karpe F, Hodson L (2012) Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 61: 1399–1403. https://doi.org/10.2337/db11-1810
  47. O'Reilly MW, House PJ, Tomlinson JW (2014) Understanding androgen action in adipose tissue. J Steroid Biochem Mol Biol 143: 277–2784. https://doi.org/10.1016/j.jsbmb.2014.04.008
  48. Pasquali R (2006) Obesity and androgens: facts and perspectives. Fertil Steril 85(5): 1319–1340. https://doi.org/10.1016/j.fertnstert.2005.10.054
  49. Isidori AM, Giannetta E, Greco EA, Gianfrilli D, Bonifacio V, Isidori A, Lenzi A, Fabbri A (2005) Effects of testosterone on body composition, bone metabolism and serum lipid profile in middleaged men: a meta-analysis. Clin Endocrinol (Oxf) 63(3): 280–293. https://doi.org/10.1111/j.1365-2265.2005.02339.x
  50. George JT, Millar RP, Anderson RA (2010) Hypothesis: kisspeptin mediates male hypogonadism in obesity and type 2 diabetes. Neuroendocrinology 91(4): 302–307. https://doi.org/10.1159/000299767
  51. Sitticharoon C, Mutirangura P, Chinachoti T, Iamaroon A, Triyasunant N, Churintaraphan M, Keadkraichaiwat I, Maikaew P, Sririwichitchai R (2021) Associations of serum kisspeptin levels with metabolic and reproductive parameters in men. Peptides 135: 170433. https://doi.org/10.1016/j.peptides.2020.170433
  52. Diamanti-Kandarakis E (2007) Role of obesity and adiposity in polycystic ovary syndrome. Int J Obes (Lond) 31: S8–S13. https://doi.org/10.1038/sj.ijo.0803730
  53. Mannerås-Holm L, Benrick A, Stener-Victorin E (2014) Gene expression in subcutaneous adipose tissue differs in women with polycystic ovary syndrome and controls matched pair-wise for age, body weight, and body mass index. Adipocyte 3: 190–196. https://doi.org/10.4161/adip.28731
  54. Pedersen SB, Kristensen K, Hermann PA, Katzenellenbogen JA, Richelsen B (2004) Estrogen controls lipolysis by up-regulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for the female fat distribution. J Clin Endocrinol Metab 89: 1869–1878. https://doi.org/10.1210/jc.2003-031327
  55. Blouin K, Nadeau M., Perreault M, Veilleux A, Drolet R, Marceau P, Mailloux J, Luu-The V, Tchernof A (2010) Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women. Clin Endocrinol (Oxf) 72: 176–188. https://doi.org/10.1111/j.1365-2265.2009.03645.x
  56. Chazenbalk G, Trivax BS, Yildiz BO, Bertolotto C, Mathur R, Heneidi S, Azziz R (2010) Regulation of adiponectin secretion by adipocytes in the polycystic ovary syndrome: role of tumor necrosis factor-{alpha}. J Clin Endocrinol Metab 95: 935–942. https://doi.org/10.1210/jc.2009-1158
  57. Borruel S, Fernandez-Duran E, Alpanes M, Marti D, Alvarez-Blasco F, Luque-Ramirez M, Escobar-Morreale HF (2013) Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab 98(3): 1254–1263. https://doi.org/10.1210/jc.2012-3698
  58. Martinez-Garcia MA, Montes-Nieto R, Fernandez-Duran E, Insenser M, Luque-Ramirez M, Escobar-Morreale HF (2013) Evidence for masculinization of adipokine gene expression in visceral and subcutaneous adipose tissue of obese women with polycystic ovary syndrome (PCOS). J Clin Endocrinol Metab 98(2): E388–E396. https://doi.org/10.1210/jc.2012-3414
  59. Rojas J, Chavez M, Olivar L, Rojas M, Morillo J, Mejias J, Calvo M, Bermudez V (2014) Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J Reprod Med 2014: 719050. https://doi.org/10.1155/2014/719050
  60. Belanger C, Luu-The V, Dupont P, Tchernof A (2002) Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Horm Metab Res 34(11–12): 737–745. https://doi.org/10.1055/s-2002-38265
  61. Mammi C, Calanchini M, Antelmi A, Cinti F, Rosano GM, Lenzi A, Caprio M, Fabbri A (2012) Androgens and adipose tissue in males: a complex and reciprocal interplay. Int J Endocrinol 2012: 789653. https://doi.org/10.1155/2012/789653
  62. Shozu М, Fukami М, Ogata Т (2014) Understanding the pathological manifestations of aromatase excess syndrome: lessons for clinical diagnosis. Expert Rev Endocrinol Metabol 9(4): 397–409. https://doi.org/10.1586/17446651.2014.926810
  63. Bulun SE (2014) Aromatase deficiency. Fertil Steril 101(2): 323–329. https://doi.org/10.1016/j.fertnstert.2013.12.022
  64. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S (2003) Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144(11): 5081–5088. https://doi.org/10.1210/en.2003-0741
  65. Björntorp P, Rosmond R (2000) Neuroendocrine abnormalities in visceral obesity. Int J Obes Relat Metab Disord 24 Suppl 2: S80–S85. https://doi.org/10.1038/sj.ijo.0801285
  66. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, Kirkland JL (2013) Mechanisms and metabolic implications of regional differences among fat depots. Cell Metabol 17: 644–656. https://doi.org/10.1016/j.cmet.2013.03.008
  67. Koster A, Stenholm S, Alley DE, Kim LJ, Simonsick EM, Kanaya AM, Visser M, Houston DK, Nicklas BJ, Tylavsky FA, Satterfield S, Goodpaster BH, Ferrucci L, Harris TB Health ABC Study (2010) Body fat distribution and inflammation among obese older adults with and without metabolic syndrome. Obesity (Silver Spring) 18(12): 2354. https://doi.org/10.1038/oby.2010.86
  68. Joyner J, Hutley L, Cameron D (2000) Glucocorticoid receptors in human preadipocytes: regional and gender differences. J Endocrinol 166(1): 145–152. https://doi.org/10.1677/joe.0.1660145
  69. Матвеев ГА, Васильева ЕЮ, Бабенко АЮ, Шляхто ЕВ (2024) Изучение постпищевой динамики концентрации гормонов у лиц с метаболически здоровым и нездоровым ожирением. Ожирение и метаболизм 21(2): 125–135.
  70. Matveyev GA, Vasilyeva EYu, Babenko AYu, Shlyakhto EV (2024) Post-nutritional Dynamics of Hormone Concentrations in Individuals with Metabolically Healthy and Unhealthy Obesity. Obesity and Metabol 21(2): 125–135. (In Russ). doi: https://doi.org/10.14341/omet13037
  71. Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJ, Morton NM, Walker BR, Stimson RH (2016) Glucocorticoids Acutely Increase Brown Adipose Tissue Activity in Humans, Revealing Species-Specific Differences in UCP-1 Regulation. Cell Metab 24(1): 130–141. https://doi.org/10.1016/j.cmet.2016.06.011
  72. Purnell JQ, Kahn SE, Samuels MH, Brandon D, Loriaux DL, Brunzell JD (2009) Enhanced cortisol production rates, free cortisol, and 11beta-HSD-1 expression correlate with visceral fat and insulin resistance in men: effect of weight loss. Am J Physiol Endocrinol Metab 296(2): E351–E357. https://doi.org/10.1152/ajpendo.90769.2008
  73. Prodam F, Ricotti R, Agarla V, Parlamento S, Genoni G, Balossini C, Walker GE, Aimaretti G, Bona G, Bellone S (2013) High-end normal adrenocorticotropic hormone and cortisol levels are associated with specific cardiovascular risk factors in pediatric obesity: a cross-sectional study. BMC Med 11: 44. https://doi.org/10.1186/1741-7015-11-44
  74. Благосклонная ЯВ, Кудряшова МИ, Залевская АГ, Мамедов РБ (1985) Некоторые особенности клиники и состояния системы АКТГ-кортизол у больных андроидным и гиноидным типами первичного ожирения. Здравоохран Туркмен 10: 19–22.
  75. Blagoslonnaya YaV, Kudryashova MI, Zalevskaya AG, Mammadov RB (1985) Some clinical features and the state of the ACTH-cortisol system in patients with Androidic and Gynoid types of Primary Obesity. Healthcare Turkmen 10(1): 19–22. (In Russ).
  76. Keenan DM, Roelfsema F, Carroll BJ, Iranmanesh A, Veldhuis JD (2009) Sex defines the age dependence of endogenous ACTH-cortisol dose responsiveness. Am J Physiol Regul Integr Comp Physiol 297(2): R515-R523. https://doi.org/10.1152/ajpregu.00200.2009
  77. Roelfsema F, Pijl H, Keenan DM, Veldhuis JD (2012) Diminished adrenal sensitivity and ACTH efficacy in obese premenopausal women. Eur J Endocrinol 167(5): 633–642. https://doi.org/10.1530/EJE-12-0592
  78. Stewart PM (1996) 11 beta-Hydroxysteroid dehydrogenase: implications for clinical medicine. Clin Endocrinol (Oxf) 44(5): 493–499. https://doi.org/10.1046/j.1365-2265.1996.716535.x
  79. Anderson AJ, Andrew R, Homer NZM, Hughes KA, Boyle LD, Nixon M, Karpe F, Stimson RH, Walker BR (2020) Effects of Obesity and Insulin on Tissue-Specific Recycling Between Cortisol And Cortisone in Men. J Clin Endocrinol Metab 106: e1206–e1220. https://doi.org/10.1210/clinem/dgaa896
  80. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12): 1752–1761. https://doi.org/10.1172/JCI21625
  81. Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC (2007) Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. FASEB J 21(9): 2185–2194. https://doi.org/10.1096/fj.06-7970com
  82. Hirata A, Maeda N, Nakatsuji H, Hiuge-Shimizu A, Okada T, Funahashi T, Shimomura I (2012) Contribution of glucocorticoid-mineralocorticoid receptor pathway on the obesity-related adipocyte dysfunction. Biochem Biophys Res Commun 419(2): 182–187. https://doi.org/10.1016/j.bbrc.2012.01.139
  83. Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK (2008) Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation 117(17): 2253–2261. https://doi.org/10.1161/CIRCULATIONAHA.107.748640
  84. Markina NO, Matveev GA, Zasypkin GG, Golikova TI, Ryzhkova DV, Kononova YA, Danilov SD, Babenko AY (2024) Role of Brown Adipose Tissue in Metabolic Health and Efficacy of Drug Treatment for Obesity. J Clin Med 13(14): 4151. https://doi.org/10.3390/jcm13144151
  85. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7): 1526–1531. https://doi.org/10.2337/db09-0530
  86. Berryman DE, Glad CA, List EO, Johannsson G (2013) The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 9(6): 346–356. https://doi.org/10.1038/nrendo.2013.64
  87. Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocrin Rev 30(2): 152–177. https://doi.org/10.1210/er.2008-0027
  88. Vahl N, Jorgensen JO, Skjaerbaek C, Veldhuis JD, Orskov H, Christiansen JS (1997) Abdominal adiposity rather than age and sex predicts mass and regularity of GH secretion in healthy adults. Am J Physiol 272(6 Pt 1): E1108–E1116. https://doi.org/10.1152/ajpendo.1997.272.6.E1108
  89. Clasey JL, Weltman A, Patrie J, Weltman JY, Pezzoli S, Bouchard C, Thorner MO, Hartman ML (2001) Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender, and other physiological factors. J Clin Endocrinol Metab 86(8): 3845–3852. https://doi.org/10.1210/jcem.86.8.7731
  90. Friedrich N, Thuesen B, Jorgensen T, Juul A, Spielhagen C, Wallaschofksi H, Linneberg A (2012) The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care 35(4): 768–773. https://doi.org/10.2337/dc11-1833
  91. Franco C, Brandberg J, Lonn L, Andersson B, Bengtsson BA, Johannsson G (2005) Growth hormone treatment reduces abdominal visceral fat in postmenopausal women with abdominal obesity: a 12-month placebo-controlled trial. J Clin Endocrinol Metabol 90(3): 1466–1474. https://doi.org/10.1210/jc.2004-1657
  92. Oh JY, Sung YA, Lee HJ (2013) Elevated thyroid stimulating hormone levels are associated with metabolic syndrome in euthyroid young women. Korean J Intern Med 28(2): 180–186. https://doi.org/10.3904/kjim.2013.28.2.180
  93. Asvold BO, Bjoro T, Vatten LJ (2009) Association of serum TSH with high body mass differs between smokers and never-smokers. J Clin Endocrinol Metabol 94(12): 5023–5027. https://doi.org/10.1210/jc.2009-1180
  94. Biondi B (2010) Thyroid and obesity: an intriguing relationship. J Clin Endocrinol Metabol 95(8): 3614–3617. https://doi.org/10.1210/jc.2010-1245
  95. Biondi B (2024) Subclinical Hypothyroidism in Patients with Obesity and Metabolic Syndrome: A Narrative Review. Nutrients 16(1): 87. https://doi.org/10.3390/nu16010087
  96. Merchan-Ramirez E, Sanchez-Delgado G, Arrizabalaga-Arriazu C (2022) Circulating concentrations of free triiodothyronine are associated with central adiposity and cardiometabolic risk factors in young euthyroid adults. J Physiol Biochem 78: 629–640. https://doi.org/10.1007/s13105-022-00881-w
  97. Nannipieri M, Cecchetti F, Anselmino M (2009) Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes 33: 1001–1006. https://doi.org/10.1038/ijo.2009.140
  98. Pearce EN (2012) Thyroid hormone and obesity. Curr Opin Endocrinol Diabetes Obesity 19(5): 408–413. https://doi.org/10.1097/MED.0b013e328355cd6c
  99. Harrison SA, Bashir MR, Guy CD (2019) Resmetirom (MGL-3196) for the treatment of nonalcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. The Lancet 394(10213): 2012–2024.
  100. Pan WW, Myers MG Jr (2018) Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 19(2): 95–105. https://doi.org/10.1038/nrn.2017.168
  101. Holm JC, Gamborg M, Ward LC, Gammeltoft S, Kaas-Ibsen K, Heitmann BL, Sorensen TI (2011) Tracking of leptin, soluble leptin receptor, and the free leptin index during weight loss and regain in children. Obes Facts 4(6): 461–468. https://doi.org/10.1159/000335121
  102. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath TL, Baskin DG, Tschöp MH, Schwartz MW (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122(1): 153–162. https://doi.org/10.1172/JCI59660
  103. Gou Y, Glat M, Damian V, Bryan CL, Phan BA, Faber CL, Trivedi A, Hwang MK, Scarlett JM, Morton GJ, Schwartz MW (2025) AgRP neuron hyperactivity drives hyperglycemia in a mouse model of type 2 diabetes. J Clin Invest 135(10): e189842. https://doi.org/10.1172/JCI189842
  104. Friedman JM (2019) Leptin and the endocrine control of energy balance. Nat Metabol 1(8): 754–764. https://doi.org/10.1038/s42255-019-0095-y
  105. Paz-Filho G, Mastronardi C, Wong ML, Licinio J (2012) Leptin therapy, insulin sensitivity, and glucose homeostasis. Indian J Endocrinol Metabol 16 Suppl 3: S549–S555. https://doi.org/10.4103/2230-8210.105571
  106. Ahima RS, Flier JS (2000) Leptin. Annu Rev Physiol 62: 413–437. https://doi.org/10.1146/annurev.physiol.62.1.413
  107. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116(7): 1784–1792. https://doi.org/10.1172/JCI29126
  108. Kantartzis K, Fritsche A, Tschritter O, Thamer C, Haap M, Schafer S, Stumvoll M, Haring HU, Stefan N (2005) The association between plasma adiponectin and insulin sensitivity in humans depends on obesity. Obes Res 13(10): 1683–1691. https://doi.org/10.1038/oby.2005.206
  109. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, Retzlaff BM, Knopp RH, Brunzell JD, Kahn SE (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46(4): 459–469. https://doi.org/10.1007/s00125-003-1074-z
  110. Sattar N, Wannamethee G, Sarwar N, Tchernova J, Cherry L, Wallace AM, Danesh J, Whincup PH (2006) Adiponectin and coronary heart disease: a prospective study and meta-analysis. Circulation 114(7): 623–629. https://doi.org/10.1161/CIRCULATIONAHA.106.618918
  111. Bozaoglu K, Curran JE, Stocker CJ, Zaibi MS, Segal D, Konstantopoulos N, Morrison S, Carless M, Dyer TD, Cole SA, Goring HH, Moses EK, Walder K, Cawthorne MA, Blangero J, Jowett JB (2010) Chemerin, a novel adipokine in the regulation of angiogenesis. J Clin Endocrinol Metabol 95(5): 2476–2485. https://doi.org/10.1210/jc.2010-0042
  112. Fatima SS, Rehman R, Baig M, Khan TA (2014) New roles of the multidimensional adipokine: chemerin. Peptides 62: 15–20. https://doi.org/10.1016/j.peptides.2014.09.019
  113. Niklowitz P, Rothermel J, Lass N, Barth A, Reinehr T (2018) Link between chemerin, central obesity, and parameters of the Metabolic Syndrome: findings from a longitudinal study in obese children participating in a lifestyle intervention. Int J Obes (Lond) 42(10): 1743–1752. https://doi.org/10.1038/s41366-018-0157-3
  114. Ministrini S, Ricci MA, Nulli Migliola E, De Vuono S, D'Abbondanza M, Paganelli MT, Vaudo G, Siepi D, Lupattelli G (2020) Chemerin predicts carotid intima-media thickening in severe obesity. Eur J Clin Invest 50(8): e13256. https://doi.org/10.1111/eci.13256
  115. Watanabe T, Watanabe-Kominato K, Takahashi Y, Kojima M, Watanabe R (2017) Adipose TissueDerived Omentin-1 Function and Regulation. Compr Physiol 7(3): 765–781. https://doi.org/10.1002/cphy.c160043
  116. Rothermel J, Lass N, Barth A, Reinehr T (2020) Link between omentin-1, obesity and insulin resistance in children: Findings from a longitudinal intervention study. Pediatr Obes 15(5): e12605. https://doi.org/10.1111/ijpo.12605
  117. Özgen İT, Oruçlu Ş, Selek S, Kutlu E, Guzel G, Cesur Y (2019) Omentin-1 level in adolescents with polycystic ovarian syndrome. Pediatr Int 61(2): 147–151. https://doi.org/10.1111/ped.13761
  118. Bluher M (2012) Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41(2): 176–182. https://doi.org/10.1007/s12020-011-9572-0
  119. Pilarski Ł, Pelczyńska M, Koperska A, Seraszek-Jaros A, Szulińska M, Bogdański P (2023) Association of Serum Vaspin Concentration with Metabolic Disorders in Obese Individuals. Biomolecules 13(3): 508. https://doi.org/10.3390/biom13030508
  120. Kurowska P, Mlyczyńska E, Dawid M, Jurek M, Klimczyk D, Dupont J, Rak A (2021) Review: Vaspin (SERPINA12) expression and function in endocrine cells. Cells 10: 1710. https://doi.org/10.3390/cells10071710
  121. Cercato C, Fonseca FA (2019) Cardiovascular risk and obesity. Diabetol Metab Syndr 11: 74. https://doi.org/10.1186/s13098-019-0468-0
  122. Møller CL, Vistisen D, Færch K, Johansen NB, Witte DR, Jonsson A, Pedersen O, Hansen T, Lauritzen T, Jørgensen ME, Torekov SS, Holst JJ (2016) Glucose-Dependent Insulinotropic Polypeptide Is Associated With Lower Low-Density Lipoprotein But Unhealthy Fat Distribution, Independent of Insulin: The ADDITION-PRO Study. J Clin Endocrinol Metab 101(2): 485–493. https://doi.org/10.1210/jc.2015-3133
  123. Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C (2023) Brown adipose tissue and regulation of human body weight. Diabetes Metabol Res Rev 39: e3594. https://doi.org/10.1002/dmrr.3594
  124. Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M (2024) An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev. Endocr Metabol Disord 25: 279–308. https://doi.org/10.1007/s11154-023-09850-0
  125. Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE (2024) Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 150: 155709. https://doi.org/10.1016/j.metabol.2023.155709
  126. Kononova YA, Tuchina TP, Babenko AY (2024) Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? Int J Mol Sci 25(24): 13295. https://doi.org/10.3390/ijms252413295
  127. Stefan N, Fritsche A, Schick F, Haring HU (2016) Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes Endocrinol 4(9): 789–798. https://doi.org/10.1016/S2213-8587(16)00082-6
  128. Szczerbinski L, Florez JS (2023) Precision medicine of obesity as an integral part of type 2 diabetes management – past, present, and future directions. Lancet Diabetes Endocrinol 11(11): 861–878. https://doi.org/10.1016/S2213-8587(23)00232-2
  129. Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and Gender Differences in Risk, Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocrinol Rev 37(3): 278–316. https://doi.org/10.1210/er.2015-1137

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».