Aquaporin-4 Knockdown in the Substantia Nigra Exacerbates α-Synuclein Pathology, Neurodegeneration, and Motor Dysfunction in a Rat Model of Parkinson's Disease
- Autores: Lapshina K.V.1, Khanina M.V.1, Guzeev M.A.1, Kaismanova M.P.1, Ekimova I.V.1
-
Afiliações:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Edição: Volume 111, Nº 10 (2025)
- Páginas: 1659-1675
- Seção: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/352705
- DOI: https://doi.org/10.7868/S2658655X25100067
- ID: 352705
Citar
Resumo
Sobre autores
K. Lapshina
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: ksenia.lapshina@gmail.com
St. Petersburg, Russia
M. Khanina
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
M. Guzeev
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
M. Kaismanova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
I. Ekimova
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of SciencesSt. Petersburg, Russia
Bibliografia
- Gouda NA, Elkamhawy A, Cho J (2022) Emerging Therapeutic Strategies for Parkinson’s Disease and Future Prospects: A 2021 Update. Biomedicines 10(2): 371. https://doi.org/10.3390/biomedicines10020371
- Raza C, Anjum R, Shakeel NUA (2019). Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 226: 77–90. https://doi.org/10.1016/j.lfs.2019.03.057
- Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z (2021) Global trends in the incidence, prevalence, and years lived with disability of Parkinson's disease in 204 countries/territories from 1990 to 2019. Front Public Health 9: 776847. https://doi.org/10.3389/fpubh.2021.776847
- McFarthing K, Buff S, Rafaloff G, Pitzer K, Fiske B, Navangul A, Beissert K, Pilcicka A, Fuest R, Wyse RK, Stott SRW (2024) Parkinson's Disease Drug Therapies in the Clinical Trial Pipeline: 2024 Update. J Parkinsons Dis 14(5): 899–912. https://doi.org/10.3233/JPD-240272
- Paulėkas E, Vanagas T, Lagunavičius S, Pajėdienė E, Petrikonis K, Rastenytė D (2024). Navigating the Neurobiology of Parkinson's: The Impact and Potential of α-Synuclein. Biomedicines 12(9): 2121. https://doi.org/10.3390/biomedicines12092121
- Hamazaki J, Murata S (2024) Relationships between protein degradation, cellular senescence, and organismal aging. J Biochem 175(5): 473–480. https://doi.org/10.1093/jb/mvae016
- Mader S, Brimberg L (2019) Aquaporin-4 Water Channel in the Brain and Its Implication for Health and Disease. Cells 8(2): 90. https://doi.org/10.3390/cells8020090
- Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147): 147ra111. https://doi.org/10.1126/scitranslmed.3003748
- Lian X, Liu Z, Gan Z, Yan Q, Tong L, Qiu L, Liu Y, Chen JF, Li Z (2026 Epub 2025 Jan 13) Targeting the glymphatic system to promote α-synuclein clearance: А novel therapeutic strategy for Parkinson's disease. Neural Regen Res 21(1): 233–247. https://doi.org/10.4103/NRR.NRR-D-24-00764
- Semyachkina-Glushkovskaya O, Postnov D, Kurths J (2018) Blood Brain Barrier, Lymphatic Clearance, and Recovery: Ariadne's Thread in Labyrinths of Hypotheses. Int J Mol Sci 19(12): 3818. https://doi.org/10.3390/ijms19123818
- Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93(4): 1543–1562. https://doi.org/10.1152/physrev.00011.2013
- Vandebroek A, Yasui M (2020) Regulation of AQP4 in the Central Nervous System. Int J Mol Sci 21(5): 1603. https://doi.org/10.3390/ijms21051603
- Semyachkina-Glushkovskaya OV, Postnov DE, Khorovodov AP, Navolokin NA, Kurthz JHG (2023) Lymphatic drainage system of the brain: А new player in neuroscience. J Evol Biochem Physiol 59: 1–19. https://doi.org/10.1134/S0022093023010015
- Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H (2025) Meningeal lymphatic drainage: Novel insights into central nervous system disease Signal Transduct Target Ther 10(1): 142. https://doi.org/10.1038/s41392-025-02177-z
- Ding Z, Fan X, Zhang Y, Yao M, Wang G, Dong Y, Liu J, Song W (2023) The glymphatic system: a new perspective on brain diseases. Front Aging Neurosci 15: 1179988. https://doi.org/10.3389/fnagi.2023.1179988
- Miao A, Luo T, Hsieh B, Edge CJ, Gridley M, Wong RTC, Constandinou TG, Wisden W, Franks NP (2024) Brain clearance is reduced during sleep and anesthesia. Nat Neurosci 27(6): 1046–1050. Erratum in: (2024) Nat Neurosci 27(7): 1425. https://doi.org/10.1038/s41593-024-01638-y
- Hoshi A, Tsunoda A, Tada M, Nishizawa M, Ugawa Y, Kakita A (2017) Expression of aquaporin 1 and aquaporin 4 in the temporal neocortex of patients with Parkinson's Disease. Brain Pathol 27(2): 160–168. https://doi.org/10.1111/bpa.12369
- Fang Y, Dai S, Jin C, Si X, Gu L, Song Z, Gao T, Chen Y, Yan Y, Yin X, Pu J, Zhang B (2022) aquaporin-4 polymorphisms are associated with cognitive performance in Parkinson's disease. Front Aging Neurosci 13: 740491. https://doi.org/10.3389/fnagi.2021.740491
- Sun X, Tian Q, Yang Z, Liu Y, Li C, Hou B, Xie A (2023) Association of AQP4 single nucleotide polymorphisms (rs335929 and rs2075575) with Parkinson's disease: A case-control study. Neurosci Lett 797: 137062. https://doi.org/10.1016/j.neulet.2023.137062
- Meinhold L, Gennari AG, Baumann-Vogel H, Werth E, Schreiner SJ, Ineichen C, Baumann CR, O'Gorman Tuura R (2025) T2 MRI visible perivascular spaces in Parkinson's disease: Сlinical significance and association with polysomnography measured sleep. Sleep 48(1): zsae233. https://doi.org/10.1093/sleep/zsae233
- Xing Y, Lin M, Li J, Huang X, Yan L, Ren J, Zhou H, Chen S, Cao Y, Huang P, Liu W (2025) Perivascular space fluid diffusivity predicts clinical deterioration in prodromal and early-stage Parkinson's disease. NPJ Parkinsons Dis 11(1): 169. https://doi.org/10.1038/s41531-025-01036-6
- Cui H, Wang W, Zheng X, Xia D, Liu H, Qin C, Tian H, Teng J (2021) Decreased AQP4 expression aggravates ɑ-synuclein pathology in Parkinson's disease mice, possibly via impaired glymphatic clearance. J Mol Neurosci 71: 2500–2513. https://doi.org/10.1007/s12031-021-01836-4
- Xue X, Zhang W, Zhu J, Chen X, Zhou S, Xu Z, Hu G, Su C (2019) Aquaporin-4 deficiency reduces TGF-β1 in mouse midbrains and exacerbates pathology in experimental Parkinson’s disease. J Cell Mol Med 23: 2568–2582. https://doi.org/10.1111/jcmm.14147
- Prydz A, Stahl K, Zahl S, Skauli N, Skare Ø, Ottersen OP, Amiry-Moghaddam M (2020) Pro-Inflammatory Role of AQP4 in Mice Subjected to Intrastriatal Injections of the Parkinsonogenic Toxin MPP. Cells 9(11): 2418. https://doi.org/10.3390/cells9112418
- Lapshina KV, Ekimova IV (2024) Aquaporin-4 and Parkinson's Disease. Int J Mol Sci 25(3): 1672. https://doi.org/10.3390/ijms25031672
- Zhang Y, Zhang C, He XZ, Li ZH, Meng JC, Mao RT, Li X, Xue R, Gui Q, Zhang GX, Wang LH (2023) Interaction between the glymphatic system and α-synuclein in Parkinson's disease. Mol Neurobiol 60(4): 2209–2222. https://doi.org/10.1007/s12035-023-03212-2
- Lapshina KV, Abramova YY, Guzeev MA, Ekimova IV (2022) TGN-020, an inhibitor of the water channel aquaporin-4, accelerates nigrostriatal neurodegeneration in the rat model of Parkinson’s disease. J Evol Biochem Physiol 58: 2035–2047. https://doi.org/10.1134/S0022093022060308
- Lapshina KV, Khanina MV, Kaismanova MP, Ekimova IV (2023) Pharmacological Inhibition of AQP4 Water Channel Activity Aggravates of Alpha-Synuclein Pathology in the Substantia Nigra in a Rat Model of Parkinson’s Disease. J Evol Biochem Physiol 59: 2168–2178. https://doi.org/10.1134/S0022093023060212
- McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol 56(1): 149–162. https://doi.org/10.1002/ana.20186
- Ekimova IV, Belan DV, Lapshina KV, Pastukhov YuF (2023) The use of the proteasome inhibitor lactacystin for modeling Parkinson’s disease: Early neurophysiological biomarkers and candidates for intranigral and extranigral neuroprotection. In: Handbook of Animal Models in Neurological Disorders. Martin CR, Patel VB, Preedy VR (eds) Acad Press, Elsevier, pp 507–523.
- Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. 6th Edition. Acad. Press, San Diego.
- Kane JR, Ciucci MR, Jacobs AN, Tews N, Russell JA, Ahrens AM, Ma ST, Britt JM, Cormack LK, Schallert T (2011) Assessing the role of dopamine in limb and cranial-oromotor control in a rat model of Parkinson's disease. J Сommunicat Disord 44(5): 529–537. https://doi.org/10.1016/j.jcomdis.2011.04.005
- Seibenhener ML, Wooten MC (2015) Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96: e52434. https://doi.org/10.3791/52434
- Fleming SM, Ekhator OR, Ghisays V (2013) Assessment of sensorimotor function in mouse models of Parkinson's disease. J Vis Exp 76: 50303. https://doi.org/10.3791/50303 2
- Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: Тherapeutic targets and strategies. Exp Mol Med 47(3): е147. https://doi.org/10.1038/emm.2014.117
- Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson's disease. J Neural Transm 38: 277–301.
- Thenral ST, Vanisree AJ (2012) Peripheral assessment of the genes AQP4, PBP and TH in patients with Parkinson’s disease. Neurochem Res 37: 512–515. https://doi.org/10.1007/ s11064-011-0637-5
- Si X, Dai S, Fang Y, Tang J, Wang Z, Li Y, Song Z, Chen Y, Liu Y, Zhao G, Zhang B, Pu J (2024) Matrix metalloproteinase-9 inhibition prevents aquaporin-4 depolarization-mediated glymphatic dysfunction in Parkinson's disease. J Adv Res 56: 125–136. https://doi.org/10.1016/j.jare.2023.03.004
- Loria F, Vargas JY, Bousset L, Syan S, Salles A, Melki R, Zurzolo C (2017) α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading. Acta Neuropathol 134: 789–808. https://doi.org/10.1007/s00401-017-1746-2
- Brück D, Wenning GK, Stefanova N, Fellner L (2016) Glia and alpha-synuclein in neurodegeneration: А complex interaction. Neurobiol Dis 85: 262–274. https://doi.org/10.1016/j.nbd.2015.03.003
- Zhang J, Yang B, Sun H, Zhou Y, Liu M, Ding J, Fang F, Fan Y, Hu G (2016) Aquaporin-4 deficiency diminishes the differential degeneration of midbrain dopaminergic neurons in experimental Parkinson's disease. Neurosci Lett 614: 7–15. https://doi.org/10.1016/j.neulet.2015.12.057
Arquivos suplementares


