Genotoxic Stress is a Trigger of Endothelial Dysfunction in Wistar Rats: Results of a Molecular Genetic Study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Atherosclerosis and coronary artery disease are the leading causes of disability and mortality among the population. Genotoxic stress can be considered as a new trigger of endothelial dysfunction underlying the pathogenesis of these diseases. This research was aimed to the study of molecular genetic markers of endothelial dysfunction associated with genotoxic stress in normolipidemic Wistar rats. Male Wistar rats that received tail vein injections of the alkylating mutagen mitomycin C (MMC) at the dosage of 0.5 mg/kg body weight (experimental group) or 0.9% NaCl solution (control group) three times a week for a month were included in the presented study. Genotoxic stress in animals was assessed using a micronucleus assay in polychromatophilic erythrocytes (PCE); endothelial dysfunction was identified by assessing the expression of the Vcam1, Icam1, Sele, Selp, Il6, Ccl2, Cxcl1, Mif, Vwf, Serpine1, Plau, Plat, Klf2, Klf4, Nfe2l2, Nos3, Snai1, Snai2, Twist1, Zeb1, Cdh5 and Cdh2 genes in the endothelial monolayer of the descending aorta. It was found that rats from the experimental group are characterized by pronounced genotoxic stress, as evidenced by a more than threefold increased frequency of micronucleated PCE and a decreased proportion of PCE in the total pool of analyzed erythrocytes. Gene expression profiling showed that rats included in the experimental group are characterized by pro-inflammatory activation of endothelium, accompanied by increased expression of the Vcam1, Icam1, Selp, Il6, Ccl2 and Cxcl1 genes, as well as impaired endothelial mechanotransduction, characterized by decreased expression of the Klf2 and Klf4 genes. Thus, MMC-induced genotoxic stress in normolipidemic Wistar rats is associated with impaired two key links of the pathogenesis of endothelial dysfunction and can be considered as one of its triggers.

Texto integral

Acesso é fechado

Sobre autores

M. Sinitsky

Research Institute for Complex Issues of Cardiovascular Diseases

Autor responsável pela correspondência
Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

A. Sinitskaya

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

M. Khutornaya

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

M. Asanov

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

D. Shishkova

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

A. Poddubnyak

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

A. Ponasenko

Research Institute for Complex Issues of Cardiovascular Diseases

Email: max-sinitsky@rambler.ru
Rússia, Kemerovo

Bibliografia

  1. GBD 2017 (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7
  2. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3: e442. https://doi.org/10.1371/journal.pmed.0030442
  3. Bertani F, Di Francesco D, Corrado MD, Talmon M, Fresu LG, Boccafoschi F (2021) Paracrine Shear-Stress-Dependent Signaling from Endothelial Cells Affects Downstream Endothelial Function and Inflammation. Int J Mol Sci 22: 13300 https://doi.org/10.3390/ijms222413300
  4. Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Curr Opin Cardiol 15: 430–440. https://doi.org/10.1097/00001573-200011000-00010.
  5. Douglas G, Channon KM (2014) The pathogenesis of atherosclerosis. Medicine 42: 480–484. https://doi.org/10.1016/j.mpmed.2014.06.011
  6. Kutikhin AG, Sinitsky MY, Ponasenko AV (2017) The role of mutagenesis in atherosclerosis. Complex Issues Cardiovasc Diseases 6: 92–101. https://doi.org/10.17802/2306-1278-2017-1-92-101
  7. Sinitsky MY, Kutikhin AG, Tsepokina AV, Shishkova DK, Asanov MA, Yuzhalin AE, Minina VI, Ponasenko AV (2020) Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. Mutat Res Genet Toxicol Environ Mutagen 858–860: 503252. https://doi.org/10.1016/j.mrgentox.2020.503252
  8. Sinitsky MY, Tsepokina AV, Kutikhin AG, Shishkova DK, Ponasenko AV (2021) The gene expression profile in endothelial cells exposed to mitomycin C. Biochemistry (Moscow) Suppl Ser B: Biomed Chem 15: 255–261. https://doi.org/10.1134/S1990750821030100
  9. Sinitsky MY, Sinitskaya AV, Shishkova DK, Ponasenko AV (2022). Genotoxic stress leads to the proinflammatory response of endothelial cells: an in vitro study. Biom Khim 68: 361–366. https://doi.org/10.18097/PBMC20226805361
  10. Lee YJ, Park SJ, Ciccone SL, Kim CR, Lee SH (2006) An in vivo analysis of MMC-induced DNA damage and its repair. Carcinogenesis 27: 446–453. https://doi.org/10.1093/carcin/bgi254
  11. Rosefort C, Fauth E, Zankl H (2004) Micronuclei induced by aneugens and clastogens in mononucleate and binucleate cells using the cytokinesis block assay. Mutagenesis 19: 277–284. https://doi.org/10.1093/mutage/geh028. PMID: 15215326
  12. Rink SM, Lipman R, Alley SC, Hopkins PB, Tomasz M (1996) Bending of DNA by the mitomycin C-induced, GpG intrastrand cross-link. Chem Res Toxicol 9: 382–389. https://doi.org/10.1021/tx950156q
  13. Caulfield JL, Wishnok JS, Tannenbaum SR (2003) Nitric oxide-induced interstrand cross links in DNA. Chem Res Toxicol 16: 571–574. https://doi.org/10.1021/tx020117w
  14. Colis LC, Raychaudhury P, Basu AK (2008) Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta. Biochemistry 47: 8070–8079. https://doi.org/10.1021/bi800529f
  15. Stone MP, Cho YJ, Huang H, Kim HY, Kozekov ID, Kozekova A, Wang H, Minko IG, Lloyd RS, Harris TM, Rizzo CJ (2008) Interstrand DNA cross-links induced by alpha, beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 41: 793–804. https://doi.org/10.1021/ar700246x
  16. Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR (2017) Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 107: 13–34. https://doi.org/10.1016/j.freeradbiomed.2016.12.049
  17. Adikesavan AK, Barrios R, Jaiswal AK (2007) In vivo role of NAD(P)H:quinone oxidoreductase 1 in metabolic activation of mitomycin C and bone marrow cytotoxicity. Cancer Res 67(17): 7966–7971. https://doi.org/10.1158/0008-5472
  18. Cammerer Z, Elhajouji A, Suter W (2007) In vivo micronucleus test with flow cytometry after acute and chronic exposures of rats to chemicals. Mutat Res 626: 26–33. https://doi.org/10.1016/j.mrgentox.2006.08.004
  19. Asanov MA, Sinitsky MY, Shishkova DK, Sinitskaya AV, Khutornaya MV, Poddubnyak AO, Ponasenko AV (2023) Dose-Response Assessment of Mitomycin C Genotoxic Effect on ApoE Knockout Mice. J Evol Biochem Physiol 59: 1693–1699. https://doi.org/10.1134/S0022093023050198
  20. Schmid W (1973) Chemical mutagen testing on in vivo somatic mammalian cells. Agents Actions 3: 77–85. https://doi.org/10.1007/BF01986538
  21. Jain AK, Pandey AK (2019) In Vivo Micronucleus Assay in Mouse Bone Marrow. Methods Mol Biol 2031: 135–146. https://doi.org/10.1007/978-1-4939-9646-9_7
  22. Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE (2022) Endothelial dysfunction in the context of blood-brain barrier modeling. J Evol Biochem Physiol 58: 781–806. https://doi.org/10.1134/S0022093022030139
  23. Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H (2009) Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol 297: H1535–H1543. https://doi.org/10.1152/ajpheart.00510.2009
  24. Vandesompele J, De Preter K, Pattyn F, Poppe B, Roy NV, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7): research0034.1. https://doi.org/10.1186/gb-2002-3-7-research0034
  25. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611–622. https://doi.org/10.1373/clinchem.2008.112797
  26. O’Riordan E, Chen J, Brodsky SV, Smirnova I, Li H, Goligorsky MS (2005) Endothelial cell dysfunction: the syndrome in making. Kidney Int 67(5): 1654–1658. https://doi.org/10.1111/j.1523-1755.2005.00256.x
  27. Chen PY, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 125(12): 4514–4528. https://doi.org/10.1172/JCI82719
  28. Cahill PA, Redmond EM (2016) Vascular endothelium – Gatekeeper of vessel health. Atherosclerosis 248: 97–109. https://doi.org/10.1016/j.atherosclerosis.2016.03.007
  29. Gimbrone MA Jr, Garcia-Cardena G (2016) Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 118(4): 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301
  30. Souilhol C, Harmsen MC, Evans PC, Krenning G (2018) Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res 114(4): 565–577. https://doi.org/10.1093/cvr/cvx253
  31. Hartman J, Frishman WH (2014) Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev 22: 147–151. https://doi.org/10.1097/CRD.0000000000000021
  32. Jensen HA, Mehta JL (2016) Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Rev Cardiovasc Ther 14: 1021–1033. https://doi.org/10.1080/14779072.2016.1207527
  33. Sabatel H, Pirlot C, Piette J, Habraken Y (2011) Importance of PIKKs in NF-κB activation by genotoxic stress. Biochem Pharmacol 82: 1371–1383. https://doi.org/10.1016/j.bcp.2011.07.105
  34. Habraken Y, Piette J (2006) NF-kappaB activation by double-strand breaks. Biochem Pharmacol 72: 1132–1141. https://doi.org/10.1016/j.bcp.2006.07.015
  35. Janssens S, Tschopp J (2006) Signals from within: the DNA-damage-induced NF-kappaB response. Cell Death Differ 13: 773–784. https://doi.org/10.1038/sj.cdd.4401843
  36. Ahmed KM, Li JJ (2007) ATM-NF-kappaB connection as a target for tumor radiosensitization. Curr Cancer Drug Targets 7: 335–342. https://doi.org/10.2174/156800907780809769
  37. Wu ZH, Miyamoto S (2007) Many faces of NF-kappaB signaling induced by genotoxic stress. J Mol Med (Berl) 85: 1187–1202. https://doi.org/10.1007/s00109-007-0227-9
  38. Chou SF, Chang SW, Chuang JL (2007) Mitomycin C upregulates IL-8 and MCP-1 chemokine expression via mitogen-activated protein kinases in corneal fibroblasts. Invest Ophthalmol Vis Sci 48: 2009–2016. https://doi.org/10.1167/iovs.06-0835
  39. Cohen I, Rider P, Vornov E, Tomas M, Tudor C, Wegner M, Brondani L, Freudenberg M, Mittler G, Ferrando-May E, Dinarello CA, Apte RN, Schneider R (2015) IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity. Sci Rep 5: 14756. https://doi.org/10.1038/srep14756
  40. Cohen I (2016) DNA damage talks to inflammation. Cytokine Growth Factor Rev 33: 35–39. https://doi.org/10.1016/j.cytogfr.2016.11.002
  41. Poliezhaieva T, Ermolaeva MA (2017) DNA damage in protective and adverse inflammatory responses: Friend of foe? Mech Ageing Dev 165(Pt A): 47–53. https://doi.org/10.1016/j.mad.2016.06.004
  42. Hudson JD, Shoaibi MA, Maestro R, Carnero A, Hannon GJ, Beach DH (1999) A proinflammatory cytokine inhibits p53 tumor suppressor activity. J Exp Med 190: 1375–1382. https://doi.org/10.1084/jem.190.10.1375
  43. Fingerle-Rowson G, Petrenko O (2007) MIF coordinates the cell cycle with DNA damage checkpoints. Lessons from knockout mouse models. Cell Div 2: 22. https://doi.org/10.1186/1747-1028-2-22
  44. Nemajerova A, Mena P, Fingerle-Rowson G, Moll UM, Petrenko O (2007) Impaired DNA damage checkpoint response in MIF-deficient mice. EMBO J 26: 987–997. https://doi.org/10.1038/sj.emboj.7601564
  45. Nemajerova A, Moll UM, Petrenko O, Fingerle-Rowson G (2007) Macrophage migration inhibitory factor coordinates DNA damage response with the proteasomal control of the cell cycle. Cell Cycle 6: 1030–1034. https://doi.org/10.4161/cc.6.9.4163
  46. Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr, Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116: 49–58. https://doi.org/10.1172/JCI24787
  47. Zakkar M, Van der Heiden K, Luong le A, Chaudhury H, Cuhlmann S, Hamdulay SS, Krams R, Edirisinghe I, Rahman I, Carlsen H, Haskard DO, Mason JC, Evans PC (2009) Activation of Nrf2 in endothelial cells protects arteries from exhibiting a proinflammatory state. Arterioscler Thromb Vasc Biol 29: 1851–1857. https://doi.org/10.1161/ATVBAHA.109.193375
  48. Zhou G, Hamik A, Nayak L, Tian H, Shi H, Lu Y, Sharma N, Liao X, Hale A, Boerboom L, Feaver RE, Gao H, Desai A, Schmaier A, Gerson SL, Wang Y, Atkins GB, Blackman BR, Simon DI, Jain MK (2012) Endothelial Kruppel-like factor 4 protects against atherothrombosis in mice. J Clin Invest 122: 4727–4731. https://doi.org/10.1172/JCI66056
  49. Davies PF, Civelek M, Fang Y, Fleming I (2013) The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc Res 99: 315–327. https://doi.org/10.1093/cvr/cvt101
  50. Nakajima H, Mochizuki N (2017) Flow pattern-dependent endothelial cell responses through transcriptional regulation. Cell Cycle 16: 1893–1901. https://doi.org/10.1080/15384101.2017.1364324
  51. Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C (2018) Nrf2 Activation Provides Atheroprotection in Diabetic Mice Through Concerted Upregulation of Antioxidant, Anti-inflammatory, and Autophagy Mechanisms. Front Pharmacol 9: 819. https://doi.org/10.3389/fphar.2018.00819
  52. SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW, Michel TM, Gimbrone MA Jr, García-Cardeña G, Jain MK (2004) KLF2 Is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199: 1305–1315. https://doi.org/10.1084/jem.20031132
  53. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167: 609–618. https://doi.org/10.1016/S0002-9440(10)63002-7
  54. Villarreal G Jr, Zhang Y, Larman HB, Gracia-Sancho J, Koo A, García-Cardeña G (2010) Defining the regulation of KLF4 expression and its downstream transcriptional targets in vascular endothelial cells. Biochem Biophys Res Commun 391: 984–989. https://doi.org/10.1016/j.bbrc.2009.12.002.
  55. Libby P, Luscher T (2020) COVID-19 is, in the end, an endothelial disease. Eur Heart J 41: 3038–3044. https://doi.org/10.1093/eurheartj/ehaa623
  56. Fogarty H, Townsend L, Morrin H, Ahmad A, Comerford C, Karampini E, Englert H, Byrne M, Bergin C, O’Sullivan JM, Martin-Loeches I, Nadarajan P, Bannan C, Mallon PW, Curley GF, Preston RJS, Rehill AM, McGonagle D, Ni Cheallaigh C, Baker RI, Renne T, Ward SE, O’Donnell JS, Irish COVID-19 Vasculopathy Study (iCVS) investigators (2021) Persistent endotheliopathy in the pathogenesis of long COVID syndrome. J Thromb Haemost 19: 2546–2553. https://doi.org/10.1111/jth.15490
  57. Gorog DA, Storey RF, Gurbel PA, Tantry US, Berger JS, Chan MY, Duerschmied D, Smyth SS, Parker WAE, Ajjan RA, Vilahur G, Badimon L, Berg JMT, Cate HT, Peyvandi F, Wang TT, Becker RC (2022) Current and novel biomarkers of thrombotic risk in COVID-19: a Consensus Statement from the International COVID-19 Thrombosis Biomarkers Colloquium. Nat Rev Cardiol 19: 475–495. https://doi.org/10.1038/s41569-021-00665-7

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The level of markers of genotoxic stress in Wistar rats. (a) – The proportion of PHE. (b) – Frequency of PHE with ME. Control group – control group, Experimental group – experimental group, PCE – PHE, MN-PCE – PHE with ME.

Baixar (104KB)
3. Fig. 2. Comparison of the obtained profile of gene expression in the descending aortic endothelium of normolipidemic Wistar rats with a reference panel for screening endothelial dysfunction. Reference plot – reference panel according to Kutikhin et al. [22]; Experimental plot – an experimental panel obtained during the presented study; Pro-inflammatory endothelial activation – proinflammatory activation of the endothelium; Prothrombic endothelial activation – prothrombic activation of the endothelium; Imposed endothelial mechanotransduction – violation of endothelial mechanotransduction; Compromised NO synthesis – violation of nitric oxide synthesis; Endothelial-to -mesenchymal transition – endothelial- mesenchymal transition. Upregulated genes are genes with increased expression, Unchanged genes are genes whose expression has not changed, Downregulated genes are genes with reduced expression.

Baixar (165KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies