Arginine Deiminase of Streptococcus pyogenes M49-16 Disrupts the Confluence of the Monolayer and the Structure of the Actin Cytoskeleton of Endothelial Cells In Vitro

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The actin cytoskeleton is involved in the regulation of the barrier function of the endothelium. The bioavailability of arginine is an important factor determining of actin cytoskeleton dynamics. Pathogenic microorganisms can use arginine-hydrolyzing enzymes to disrupt the confluences of the vascular endothelium for subsequent dissemination. In this study, the effect of streptococcal arginine deiminase on the human umbilical vein endothelial cells monolayer confluence and the actin cytoskeleton structure in vitro was studied. The original technique for obtaining supernatants by sonication destroyed streptococcal cells (SDSCs) of the original strain of Streptococcus pyogenes M49-16 and its isogenic mutant with the inactivated arginine deiminase gene S. pyogenes M49-16delArcA was used in this study. The changes in the L-arginine concentration were evaluated by the modified Sakaguchi colorimetric method. The structure of the actin cytoskeleton was analyzed after cells staining with fluorescent dye labeled phalloidin. The confluence of the endothelial cell monolayer was evaluated morphologically after staining the cells with crystal violet dye. It was found that in the presence of the parental strain-derived SDSC, a significant decrease in the arginine concentration in the endothelial cells culture medium caused dynamic changes in the actin cytoskeleton structure. After 48 hours, lamellae and stress fibers formed. After 72 hours, the content of F-actin decreased and the confluence of the monolayer of endothelial cells was disrupted. Such changes were not detected when cells were cultured under standard conditions and in the presence of mutant strain-derived SDSC. The results obtained show that pathogenic microbes can use arginine depletion to regulate endothelial barrier function and dissemination in the host organism.

Sobre autores

J. Mammedova

Institute of Experimental Medicine

Email: Starickova@yandex.ru
Russia, Saint-Petersburg

A. Karaseva

Institute of Experimental Medicine

Email: Starickova@yandex.ru
Russia, Saint-Petersburg

L. Burova

Institute of Experimental Medicine

Email: Starickova@yandex.ru
Russia, Saint-Petersburg

A. Sokolov

Institute of Experimental Medicine

Email: Starickova@yandex.ru
Russia, Saint-Petersburg

D. Perepletchikova

Institute of Cytology of the Russian Academy of Sciences

Email: Starickova@yandex.ru
Russia, Saint Petersburg

A. Malashicheva

Institute of Cytology of the Russian Academy of Sciences; Almazov National Medical Research Centre

Email: Starickova@yandex.ru
Russia, Saint Petersburg; Russia, Saint-Petersburg

E. Starikova

Institute of Experimental Medicine; Pavlov First St. Petersburg State Medical University; Institute of Medical Education, Almazov National Medical Research Centre

Autor responsável pela correspondência
Email: Starickova@yandex.ru
Russia, Saint-Petersburg; Russia, Saint-Petersburg; Russia, Saint-Petersburg

Bibliografia

  1. Shao Y, Saredy J, Yang WY, Sun Y, Lu Y, Saaoud F, Drummer C, Johnson C, Xu K, Jiang X, Wang H, Yang X (2020) Vascular Endothelial Cells and Innate Immunity. Arteriosclerosis, Thrombosis, and Vascular Biol 40: e138–e152. https://doi.org/10.1161/ATVBAHA.120.314330
  2. Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363: 689–691. https://doi.org/10.1056/NEJMcibr1007320
  3. Toh C-H, Toh JMH, Abrams ST (2019) Disseminated intravascular coagulation – what can we do? Hemasphere 3: 92–94. https://doi.org/10.1097/HS9.0000000000000232
  4. Bannerman DD, Goldblum SE (1999) Direct effects of endotoxin on the endothelium: barrier function and injury. Lab Invest 79: 1181–1199.
  5. Saxton RA, Sabatini DM (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell 168: 960–976. https://doi.org/10.1016/j.cell.2017.02.004
  6. Morris SM Jr (2016) Arginine Metabolism Revisited. J Nutrition 146: 2579S–2586S. https://doi.org/10.3945/jn.115.226621
  7. Pavlyk I, Rzhepetskyy Y, Jagielski AK, Drozak J, Wasik A, Pereverzieva G, Olchowik M, Kunz-Schugart LA, Stasyk O, Redowicz MJ (2015) Arginine deprivation affects glioblastoma cell adhesion, invasiveness and actin cytoskeleton organization by impairment of β-actin arginylation. Amino Acids 47: 199–212. https://doi.org/10.1007/s00726-014-1857-1
  8. Feldmeyer N, Wabnitz G, Leicht S, Luckner-Minden C, Schiller M, Franz T, Conradi R, Kropf P, Müller I, Ho AD, Samstag Y, Munder M (2012) Arginine deficiency leads to impaired cofilin dephosphorylation in activated human T lymphocytes. Int Immunol 24: 303–313. https://doi.org/10.1093/intimm/dxs004
  9. Karakozova M, Kozak M, Wong CCL, Bailey AO, Yates JR, Mogilner A, Zebroski H, Kashina A (2006) Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313: 192–196. https://doi.org/10.1126/science.1129344
  10. Saha S, Mundia MM, Zhang F, Demers RW, Korobova F, Svitkina T, Perieteanu AA, Dawson JF, Kashina A (2010) Arginylation Regulates Intracellular Actin Polymer Level by Modulating Actin Properties and Binding of Capping and Severing Proteins. Mol Biol Cell 21: 1350–1361. https://doi.org/10.1091/mbc.E09-09-0829
  11. Baldwin AL, Thurston G, Al Naemi H (1998) Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actin cytoskeleton. Am J Physiol Heart Circul Physiol 274: H1776–H1784. https://doi.org/10.1152/ajpheart.1998.274.5.H1776
  12. Liu SM, Sundqvist T (1997) Nitric Oxide and cGMP Regulate Endothelial Permeability and F-Actin Distribution in Hydrogen Peroxide-Treated Endothelial Cells. Exp Cell Res 235: 238–244. https://doi.org/10.1006/excr.1997.3675
  13. Lubkin A, Torres VJ (2017) Bacteria and endothelial cells: a toxic relationship. Curr Opin Microbiol 35: 58–63. https://doi.org/10.1016/j.mib.2016.11.008
  14. Bogatcheva NV, Verin AD (2008) The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 76: 202–207. https://doi.org/10.1016/j.mvr.2008.06.003
  15. Colonne PM, Winchell CG, Voth DE (2016) Hijacking Host Cell Highways: Manipulation of the Host Actin Cytoskeleton by Obligate Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 22 (6): 107. https://doi.org/10.3389/fcimb.2016.00107
  16. Marquis RE, Bender GR, Murray DR, Wong A (1987) Arginine deiminase system and bacterial adaptation to acid environments. Appl Environment Microbiol 53: 198–200. https://doi.org/10.1128/aem.53.1.198-200.1987
  17. Park I-S, Kang S-W, Shin Y-J, Chae K-Y, Park M-O, Kim M-Y, Wheatley DN, Min B-H (2003) Arginine deiminase: a potential inhibitor of angiogenesis and tumour growth. Br J Cancer 89: 907–914. https://doi.org/10.1038/sj.bjc.6601181
  18. Старикова ЭА, Карасева АБ, Бурова ЛА, Суворов АН, Соколов АВ. Васильев ВБ, Фрейдлин ИС (2016) Роль аргининдеиминазы Streptococcus pyogenes M49-16 в ингибиции пролиферации эндотелиальных клеток человека линии Ea.hy926. Мед иммунол 18(6): 555–562. [Starikova EA, Karaseva AB, Burova LA, Suvorov AN, Sokolov AV, Vasiliev VB, Freidlin IS (2016) The role of arginine deiminase Streptococcus pyogenes M49-16 in inhibition of proliferation of human Ea.hy926 line endothelial cells. Med Immunol 18(6): 555–562. (In Russ)].
  19. Маммедова ДТ, Старикова ЭА, Бурова ЛА, Малашичева АБ, Семёнова ДС, Фрейдлин ИС (2017) Влияние аргининдеиминазы S. pyogenes на пролиферативную и миграционную активность эндотелиальных клеток вены пупочного канатика человека. Цитокины и воспаление 16(3): 48–51. [Mammedova JT, Starikova EA, Burova LA, Malashicheva AB, Semenova DS, Freidlin IS (2017) The effect of S. pyogenes arginine deiminase on the proliferative and migration activity of human umbilical vein endothelial cells. Tsitokiny i vospaleniye [Cytokines and Inflammation] 16(3): 48–51. (In Russ)].
  20. Zhuo W, Song X, Zhou H, Luo Y (2011) Arginine deiminase modulates endothelial tip cells via excessive synthesis of reactive oxygen species. Biochem Soc Trans 39: 1376–1381. https://doi.org/10.1042/BST0391376
  21. Beloussow K, Wang L, Wu J, Ann D, Shen W-C (2002) Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer Lett 183: 155–162. https://doi.org/10.1016/S0304-3835(01)00793-5
  22. Маммедова ДТ, Старикова ЭА, Бурова ЛА, Малашичева АБ, Семёнова ДС, Фрейдлин ИС (2018) Бактериальная аргининдеиминаза нарушает структуру актинового цитоскелета эндотелиальных клеток. Цитокины и воспаление 18(1-4): 75–79. [Mammedova JT, Starikova EA, Burova LA, Malashicheva AB, Semenova DS, Freidlin IS (2018) Bacterial arginine deiminase disrupts the endothelial cells actin cytoskeleton. Tsitokiny i vospaleniye [Cytokines and Inflammat] 18(1-4): 75–79. (In Russ)].
  23. Starikova EA, Sokolov AV, Vlasenko AY, Burova LA, Freidlin IS, Vasilyev VB (2016) Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem Cell Biol 94:129–137. https://doi.org/10.1139/bcb-2015-006924
  24. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2: 481–485. https://doi.org/10.1038/nprot.2007.54
  25. Gilinskiĭ OR, Gilinsky M, Krivoschekov S, Latysheva T, Naumenko S, Gilinskaya O, Aizman R, Golovin M, Balioz N, Karmakulova I (2018) L-Arginine and Its Methylated Derivatives in the Blood of Athletes. Human Physiol 44: 679–685. https://doi.org/10.1134/S0362119718060063
  26. Kelly E, Morris JR SM, Billiar TR (1995) Review: Nitric Oxide, Sepsis, and Arginine Metabolism. J Parenter Enter Nutrition 19: 234–238. https://doi.org/10.1177/0148607195019003234
  27. Старикова ЭА, Маммедова ДТ, Бурова ЛА, Соколов АВ, Васильев ВБ, Фрейдлин ИС (2017) Влияние аргининдеиминазы Streptococcus pyogenes на миграционную активность и структуру цитоскелета эндотелиальных клеток человека. Мед иммунол 19(5): 521–528. [Starikova EA, Mammedova JT, Burova LA, Sokolov AV, Vasiliev VB, Freidlin IS (2017) The effect of Streptococcus pyogenes arginine deiminase on the migration activity and structure of the cytoskeleton of human endothelial cells. Med Immunol 19(5): 521–528. (In Russ)].
  28. Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7: 429–440. https://doi.org/10.1038/nrc2148
  29. Belvitch P, Htwe YM, Brown ME, Dudek S (2018) Cortical Actin Dynamics in Endothelial Permeability. Curr Top Membr 82: 141–195. https://doi.org/10.1016/bs.ctm.2018.09.003
  30. Samstag Y, John I, Wabnitz GH (2013) Cofilin: a redox sensitive mediator of actin dynamics during T-cell activation and migration. Immunol Rev 256: 30–47. https://doi.org/10.1111/imr.12115
  31. Wong CCL, Xu T, Rai R, Bailey AO, Yates JR, Wolf YI, Zebroski H, Kashina A (2007) Global Analysis of Posttranslational Protein Arginylation. PLoS Biol 5: e258. https://doi.org/10.1371/journal.pbio.0050258
  32. Kurosaka S, Leu NA, Zhang F, Bunte R, Saha S, Wang J, Guo C, He W, Kashina A (2010) Arginylation-Dependent Neural Crest Cell Migration Is Essential for Mouse Development. PLoS Genet 6: e1000878. https://doi.org/10.1371/journal.pgen.1000878
  33. Kwon YT, Kashina AS, Davydov IV, Hu R-G, An JY, Seo JW, Du F, Varshavsky A (2002) An essential role of N-terminal arginylation in cardiovascular development. Science 297: 96–99. https://doi.org/10.1126/science.1069531
  34. Leu NA, Kurosaka S, Kashina A (2009) Conditional Tek Promoter-Driven Deletion of Arginyltransferase in the Germ Line Causes Defects in Gametogenesis and Early Embryonic Lethality in Mice. PLoS One 4: e7734. https://doi.org/10.1371/journal.pone.0007734
  35. Kashina A (2014) Protein arginylation, a global biological regulator that targets actin cytoskeleton and the muscle. Anat Rec (Hoboken) 297: 1630–1636. https://doi.org/10.1002/ar.22969
  36. Cirino G, Fiorucci S, Sessa WC (2003) Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends Pharmacol Sci 24: 91–95. https://doi.org/10.1016/S0165-6147(02)00049-4
  37. Mammedova JT, Sokolov AV, Freidlin IS, Starikova EA (2021) The Mechanisms of L-Arginine Metabolism Disorder in Endothelial Cells. Biochemistry (Moscow) 86: 146–155. https://doi.org/10.1134/S0006297921020036
  38. Kondrikov D, Fonseca FV, Elms S, Fulton D, Black SM, Block ER, Su Y (2010) β-Actin Association with Endothelial Nitric-oxide Synthase Modulates Nitric Oxide and Superoxide Generation from the Enzyme. J Biol Chem 285: 4319–4327. https://doi.org/10.1074/jbc.M109.063172
  39. Su Y (2014) Regulation of Endothelial Nitric oxide Synthase Activity by Protein-Protein Interaction. Curr Pharm Des 20: 3514–3520. https://doi.org/10.2174/13816128113196660752
  40. Shen L-J, Lin W-C, Beloussow K, Hosoya K-I, Terasaki T, Ann DK, Shen W-C (2003) Recombinant arginine deiminase as a differential modulator of inducible (iNOS) and endothelial (eNOS) nitric oxide synthetase activity in cultured endothelial cells. Biochem Pharmacol 66: 1945–1952. https://doi.org/10.1016/S0006-2952(03)00555-0
  41. Mammedova JT, Sokolov AV, Burova LA, Karaseva AB, Grudinina NA, Malashicheva AB, Semenova DS, Kiseleva EP, Starikova EA (2023) Streptococcal arginine deiminase regulates endothelial inflammation, mTOR pathway and autophagy. Immunobiology (In press).
  42. Burns EH, Lukomski S, Rurangirwa J, Podbielski A, Musser JM (1998) Genetic inactivation of the extracellular cysteine protease enhances in vitro internalization of group A streptococci by human epithelial and endothelial cells. Microb Pathog 24: 333–339. https://doi.org/10.1006/mpat.1998.0204
  43. Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ (2015) Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 17: 1721–1741. https://doi.org/10.1111/cmi.12531

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (143KB)
3.

Baixar (2MB)
4.

Baixar (293KB)
5.

Baixar (2MB)

Declaração de direitos autorais © Дж.Т. Маммедова, А.Б. Карасева, Л.А. Бурова, А.В. Соколов, Д.А. Переплетчикова, А.Б. Малашичева, Э.А. Старикова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies