Anakinra Promotes M2 Microglia Activation during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Astrocytes and microglia and their polarization are thought to contribute to the progression of epilepsy. One of the processes affecting polarization is neuroinflammation, which plays an important role in epileptogenesis. However, the specific mechanisms of its involvement in shifting the pro- and anti-inflammatory reactivation of astro- and microglia have not been clarified. In this study, we examined the effect of 7-day interleukin-1 receptor antagonist (anakinra) administration on glial cell polarization during the latent phase of the lithium-pilocarpine model in 7-week-old male Wistar rats. In temporal cortex, dorsal and ventral hippocampus the mRNA expression levels of the following genes were analyzed: (i) markers of astroglia (S100b) and microglia (Aif1) activation, (ii) astrocytic proteins involved in glutamate transport and metabolism (Slc1a3, Glul, Gja1), (iii) pro-inflammatory pathway interleukin-1β (Nlrp3, Il1b, Il1rn) and transforming growth factor β1 (Tgfb1), (iv) markers of astroglia polarization (Lcn2, S100a10, Gbp2, Ptx3), and (v) microglia polarization (Nos2 and Arg1). The mRNA expression levels of S100b and Aif1 were significantly increased, and anakinra administration did not reduce their overexpression. This indicates reactivation of astroglia and microglia regardless of the anakinra administered. The expression of Slc1a3, Glul, and Gja1 genes increased in the hippocampus; anakinra administration did not affect their hyperexpression, but promoted increased expression of Gja1 in the temporal cortex. The mRNA production of Lcn2, S100a10, Gbp2, Ptx3, Nlrp3, Il1b, Il1rn and Tgfb1 increased in all structures. Administration of anakinra reduced the gene expression of Il1b. Among the markers of microglia polarization, downregulation of Arg1 expression in the dorsal hippocampus and Nos2 expression in the temporal cortex was detected. Anakinra administration enhanced the decrease in Nos2 expression and restored the level of Arg1 expression to control values. Thus, anakinra administration did not affect the intensity of glial cell reactivation, but improved M2 reactivation of microglia.

Full Text

Restricted Access

About the authors

M. V. Zakharova

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

A. V. Dyomina

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

A. A. Kovalenko

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

O. E. Zubareva

Sechenov Institute of Evolutionary Physiology and Biochemistry

Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

A. M. Ischenko

Saint-Petersburg Pasteur Institute

Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

A. V. Zaitsev

Sechenov Institute of Evolutionary Physiology and Biochemistry

Author for correspondence.
Email: aleksey_zaitsev@mail.ru
Russian Federation, St. Petersburg

References

  1. Pitkänen A, Lukasiuk K, Dudek FE, Staley KJ (2015) Epileptogenesis. Cold Spring Harb Perspect Med 5: a022822. https://doi.org/10.1101/cshperspect.a022822
  2. Singh S, Singh TG, Rehni AK (2021) An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis. CNS Neurol Disord – Drug Targets 19: 750–779. https://doi.org/10.2174/1871527319666200910153827
  3. Yu C, Deng XJ, Xu D (2023) Microglia in epilepsy. Neurobiol Dis 185: 106249. https://doi.org/10.1016/J.NBD.2023.106249
  4. Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V (2019) General Pathophysiology of Astroglia. Adv Exp Med Biol 1175: 1149. https://doi.org/10.1007/978-981-13-9913-8_7
  5. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36: 174–184. https://doi.org/10.1016/j.tins.2012.11.008
  6. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J Neuroinflammat 11: 1–15. https://doi.org/10.1186/1742-2094-11-98
  7. Ding Z-B, Song L-J, Wang Q, Kumar G, Yan Y-Q, Ma C-G (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen Res 16: 1702. https://doi.org/10.4103/1673-5374.306064
  8. Sharma S, Puttachary S, Thippeswamy T (2019) Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy. J Neurosci Res 97: 1363–1377. https://doi.org/10.1002/jnr.24205
  9. Morris SM (2007) Arginine Metabolism: Boundaries of Our Knowledge. J Nutr 137: 1602S-1609S. https://doi.org/10.1093/jn/137.6.1602S
  10. Munder M (2009) Arginase: an emerging key player in the mammalian immune system. Br J Pharmacol 158: 638–651. https://doi.org/10.1111/j.1476-5381.2009.00291.x
  11. Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D (2022) Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 18: 707–722. https://doi.org/10.1038/s41582-022-00727-5
  12. Gibbons MB, Smeal RM, Takahashi DK, Vargas JR, Wilcox KS (2013) Contributions of astrocytes to epileptogenesis following status epilepticus: Opportunities for preventive therapy? Neurochem Int 63: 660–669. https://doi.org/https://doi.org/10.1016/j.neuint.2012.12.008
  13. Chen T-S, Huang T-H, Lai M-C, Huang C-W (2023) The Role of Glutamate Receptors in Epilepsy. Biomedicines 11: 783. https://doi.org/10.3390/biomedicines11030783
  14. Boison D, Steinhäuser C (2018) Epilepsy and astrocyte energy metabolism. Glia 66: 1235–1243. https://doi.org/10.1002/glia.23247
  15. Torres GE, Amara SG (2007) Glutamate and monoamine transporters: new visions of form and function. Curr Opin Neurobiol 17: 304–312. https://doi.org/10.1016/j.conb.2007.05.002
  16. Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SHR (2015) Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 18: 219–226. https://doi.org/10.1038/nn.3901
  17. Verhoog QP, Holtman L, Aronica E, van Vliet EA (2020) Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 11. https://doi.org/10.3389/fneur.2020.591690
  18. Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA, Aldana BI (2021) Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 196: 108719. https://doi.org/10.1016/j.neuropharm.2021.108719
  19. Yang T-T, Qian F, Liu L, Peng X-C, Huang J-R, Ren B-X, Tang F-R (2021) Astroglial connexins in epileptogenesis. Seizure 84: 122–128. https://doi.org/10.1016/j.seizure.2020.11.022
  20. Barker-Haliski M, White HS (2015) Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb Perspect Med 5: a022863. https://doi.org/10.1101/cshperspect.a022863
  21. Dyomina AV, Kovalenko AA, Zakharova MV, Postnikova TY, Griflyuk AV, Smolensky IV, Antonova IV, Zaitsev AV (2022) MTEP, a selective mGluR5 antagonist, had a neuroprotective effect but did not prevent the development of spontaneous recurrent seizures and behavioral comorbidities in the rat lithium–pilocarpine model of epilepsy. Int J Mol Sci 23. https://doi.org/10.3390/ijms23010497
  22. Shen W, Pristov J, Nobili P, Nikolić L (2023) Can glial cells save neurons in epilepsy? Neural Regen Res 18: 1417. https://doi.org/10.4103/1673-5374.360281
  23. Soltani Khaboushan A, Yazdanpanah N, Rezaei N (2022) Neuroinflammation and Proinflammatory Cytokines in Epileptogenesis. Mol Neurobiol 59: 1724–1743. https://doi.org/10.1007/s12035-022-02725-6
  24. Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A (2008) Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 29: 142–160. https://doi.org/10.1016/j.nbd.2007.08.012
  25. Pohlentz MS, Müller P, Cases-Cunillera S, Opitz T, Surges R, Hamed M, Vatter H, Schoch S, Becker AJ, Pitsch J (2022) Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS One 17: 1–20. https://doi.org/10.1371/journal.pone.0271995
  26. Wu C, Zhang G, Chen L, Kim S, Yu J, Hu G, Chen J, Huang Y, Zheng G, Huang S (2020) The Role of NLRP3 and IL-1β in Refractory Epilepsy Brain Injury. Front Neurol 10: 1–8. https://doi.org/10.3389/fneur.2019.01418
  27. Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ (2005) Interleukin-1β contributes to the generation of experimental febrile seizures. Ann Neurol 57: 152–155. https://doi.org/10.1002/ana.20358
  28. Vezzani A, Baram TZ (2007) New Roles for Interleukin-1 Beta in the Mechanisms of Epilepsy. Epilepsy Curr 7: 45–50. https://doi.org/10.1111/j.1535-7511.2007.00165.x
  29. Weber A, Wasiliew P, Kracht M (2010) Interleukin-1 (IL-1) Pathway. Sci Signal 3: 1–7. https://doi.org/10.1126/scisignal.3105cm1
  30. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12: 2623–2633. https://doi.org/10.1046/j.1460-9568.2000.00140.x
  31. Waugh J, Perry CM (2005) Anakinra. BioDrugs 19: 189–202. https://doi.org/10.2165/00063030-200519030-00005
  32. Cavalli G, Dinarello CA (2018) Anakinra therapy for non-cancer inflammatory diseases. Front Pharmacol 9: 1–21. https://doi.org/10.3389/fphar.2018.01157
  33. Ravizza T, Lucas S, Balosso S, Bernardino L, Ku G, Noé F, Malva J, Randle JCR, Allan S, Vezzani A (2006) Inactivation of Caspase-1 in Rodent Brain: A Novel Anticonvulsive Strategy. Epilepsia 47: 1160–1168. https://doi.org/10.1111/j.1528-1167.2006.00590.x
  34. Noe FM, Polascheck N, Frigerio F, Bankstahl M, Ravizza T, Marchini S, Beltrame L, Banderó CR, Löscher W, Vezzani A (2013) Pharmacological blockade of IL-1β/IL-1 receptor type 1 axis during epileptogenesis provides neuroprotection in two rat models of temporal lobe epilepsy. Neurobiol Dis 59: 183–193. https://doi.org/https://doi.org/10.1016/j.nbd.2013.07.015
  35. Curia G, Longo D, Biagini G, Jones RSG, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172: 143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019
  36. André V, Dubé C, François J, Leroy C, Rigoulot M, Roch C, Namer IJ, Nehlig A (2007) Pathogenesis and Pharmacology of Epilepsy in the Lithium-pilocarpine Model. Epilepsia 48: 41–47. https://doi.org/10.1111/j.1528-1167.2007.01288.x
  37. Коваленко АА, Калеменев СВ, Шварц АП, Дёмина АВ, Зубарева ОЕ (2019) Региональная специфика изменений продукции мРНК провоспалительных цитокинов в литий-пилокарпиновой модели височной эпилепсии. Рос физиол журн им ИМ Сеченова 105: 716–723. [Kovalenko AA, Kalemenev SV, Schwartz AP, Demina AV, Zubareva OE (2019) Regional specificity of changes in the production of mRNA of proinflammatory cytokines in the lithium-pilocarpine model of temporal lobe epilepsy. Russ J Physiol 105: 716–723. (In Russ)]. https://doi.org/10.1134/S0869813919060037
  38. De Bruin VMS, Marinho MMF, De Sousa FCF, Viana GSB (2000) Behavioral and neurochemical alterations after lithium-pilocarpine administration in young and adult rats: A comparative study. Pharmacol Biochem Behav 65: 547–551. https://doi.org/10.1016/S0091-3057(99)00247-6
  39. Furtado MA, Castro OW, Del Vecchio F, de Oliveira JAC, Garcia-Cairasco N (2011) Study of spontaneous recurrent seizures and morphological alterations after status epilepticus induced by intrahippocampal injection of pilocarpine. Epilepsy Behav 20: 257–266. https://doi.org/10.1016/j.yebeh.2010.11.024
  40. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier.
  41. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: A study of rat brain tissue. Synapse 62: 302–309. https://doi.org/10.1002/syn.20496
  42. Schwarz AP, Malygina DA, Kovalenko AA, Trofimov AN, Zaitsev AV (2020) Multiplex qPCR assay for assessment of reference gene expression stability in rat tissues/samples. Mol Cell Probes 53: 101611. https://doi.org/10.1016/j.mcp.2020.101611
  43. Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA (2004) Taste Receptor Cells Express pH-Sensitive Leak K + Channels. J Neurophysiol 92: 2909–2919. https://doi.org/10.1152/jn.01198.2003
  44. Yamaguchi M, Yamauchi A, Nishimura M, Ueda N, Naito S (2005) Soybean Oil Fat Emulsion Prevents Cytochrome P450 mRNA Down-Regulation Induced by Fat-Free Overdose Total Parenteral Nutrition in Infant Rats. Biol Pharm Bull 28: 143–147. https://doi.org/10.1248/bpb.28.143
  45. Swijsen A, Nelissen K, Janssen D, Rigo J-M, Hoogland G (2012) Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures. BMC Res Notes 5: 685. https://doi.org/10.1186/1756-0500-5-685
  46. Pohjanvirta R, Niittynen M, Lindén J, Boutros PC, Moffat ID, Okey AB (2006) Evaluation of various housekeeping genes for their applicability for normalization of mRNA expression in dioxin-treated rats. Chem Biol Interact 160: 134–149. https://doi.org/10.1016/j.cbi.2006.01.001
  47. Malkin SL, Amakhin DV, Veniaminova EA, Kim KK, Zubareva OE, Magazanik LG, Zaitsev AV (2016) Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience 327: 146–155. https://doi.org/10.1016/j.neuroscience.2016.04.024
  48. Cook NL, Vink R, Donkin JJ, van den Heuvel C (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury. J Neurosci Res 87: 34–41. https://doi.org/10.1002/jnr.21846
  49. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9: 53. https://doi.org/10.1186/1471-2199-9-53
  50. Rioja I, Bush KA, Buckton JB, Dickson MC, Life PF (2004) Joint cytokine quantification in two rodent arthritis models: kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment. Clin Exp Immunol 137: 65–73. https://doi.org/10.1111/j.1365-2249.2004.02499.x
  51. Zubareva OE, Dyomina AV, Kovalenko AA, Roginskaya AI, Melik-Kasumov TB, Korneeva MA, Chuprina AV, Zhabinskaya AA, Kolyhan SA, Zakharova MV, Gryaznova MO, Zaitsev AV (2023) Beneficial Effects of Probiotic Bifidobacterium longum in a Lithium-Pilocarpine Model of Temporal Lobe Epilepsy in Rats. Int J Mol Sci 24: 8451. https://doi.org/10.3390/ijms24098451
  52. Su J, Zhang Y, Cheng C, Zhu Y, Ye Y, Sun Y, Xiang S, Wang Y, Liu Z, Zhang X (2021) Hydrogen regulates the M1/M2 polarization of alveolar macrophages in a rat model of chronic obstructive pulmonary disease. Exp Lung Res 47: 301–310. https://doi.org/10.1080/01902148.2021.1919788
  53. Sang N, Yun Y, Li H, Hou L, Han M, Li G (2010) SO2 Inhalation Contributes to the Development and Progression of Ischemic Stroke in the Brain. Toxicol Sci 114: 226–236. https://doi.org/10.1093/toxsci/kfq010
  54. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M (2015) How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif 3: 9–16. https://doi.org/10.1016/j.bdq.2015.01.005
  55. Livak KJ, Schmittgen TD (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 25: 402–408. https://doi.org/10.1006/meth.2001.1262
  56. Langeh U, Singh S (2020) Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol 19: 265–277. https://doi.org/10.2174/1570159X18666200729100427
  57. Escartin C, Galea E, Lakatos A, O’Callaghan JP, Petzold GC, Serrano-Pozo A, Steinhäuser C, Volterra A, Carmignoto G, Agarwal A, Allen NJ, Araque A, Barbeito L, Barzilai A, Bergles DE, Bonvento G, Butt AM, Chen WT, Cohen-Salmon M, Cunningham C, Deneen B, De Strooper B, Díaz-Castro B, Farina C, Freeman M, Gallo V, Goldman JE, Goldman SA, Götz M, Gutiérrez A, Haydon PG, Heiland DH, Hol EM, Holt MG, Iino M, Kastanenka KV, Kettenmann H, Khakh BS, Koizumi S, Lee CJ, Liddelow SA, MacVicar BA, Magistretti P, Messing A, Mishra A, Molofsky AV, Murai KK, Norris CM, Okada S, Oliet SHR, Oliveira JF, Panatier A, Parpura V, Pekna M, Pekny M, Pellerin L, Perea G, Pérez-Nievas BG, Pfrieger FW, Poskanzer KE, Quintana FJ, Ransohoff RM, Riquelme-Perez M, Robel S, Rose CR, Rothstein JD, Rouach N, Rowitch DH, Semyanov A, Sirko S, Sontheimer H, Swanson RA, Vitorica J, Wanner IB, Wood LB, Wu J, Zheng B, Zimmer ER, Zorec R, Sofroniew MV, Verkhratsky A (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24: 312. https://doi.org/10.1038/S41593-020-00783-4
  58. Smolders I, Khan GM, Manil J, Ebinger G, Michotte Y (1997) NMDA receptor-mediated pilocarpine-induced seizures: characterization in freely moving rats by microdialysis. Br J Pharmacol 121: 1171–1179. https://doi.org/10.1038/SJ.BJP.0701231
  59. Dyomina AV, Zubareva OE, Smolensky IV, Vasilev DS, Zakharova MV, Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev AV (2020) Anakinra reduces epileptogenesis, provides neuroprotection, and attenuates behavioral impairments in rats in the lithium–pilocarpine model of epilepsy. Pharmaceuticals 13: 1–25. https://doi.org/10.3390/ph13110340
  60. Choi J, Koh S (2008) Role of brain inflammation in epileptogenesis. Yonsei Med J 49: 1–18. https://doi.org/10.3349/ymj.2008.49.1.1
  61. Kim K, Lee S, Kegelman TP, Su Z, Das SK, Dash R, Dasgupta S, Barral PM, Hedvat M, Diaz P, Reed JC, Stebbins JL, Pellecchia M, Sarkar D, Fisher PB (2011) Role of Excitatory Amino Acid Transporter-2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. J Cell Physiol 226: 2484–2493. https://doi.org/10.1002/jcp.22609
  62. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MGA, Schrama LH, van Veelen CWM, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PNE (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125: 32–43. https://doi.org/10.1093/brain/awf001
  63. Sarac S, Afzal S, Broholm H, Madsen FF, Ploug T, Laursen H (2009) Excitatory amino acid transporters EAAT-1 and EAAT-2 in temporal lobe and hippocampus in intractable temporal lobe epilepsy. APMIS 117: 291–301. https://doi.org/10.1111/j.1600-0463.2009.02443.x
  64. Zeis T, Allaman I, Gentner M, Schroder K, Tschopp J, Magistretti PJ, Schaeren-Wiemers N (2015) Metabolic gene expression changes in astrocytes in Multiple Sclerosis cerebral cortex are indicative of immune-mediated signaling. Brain Behav Immun 48: 313–325. https://doi.org/10.1016/j.bbi.2015.04.013
  65. Bedner P, Steinhäuser C (2013) Altered Kir and gap junction channels in temporal lobe epilepsy. Neurochem Int 63: 682–687. https://doi.org/10.1016/j.neuint.2013.01.011
  66. Kékesi O, Ioja E, Szabó Z, Kardos J, Héja L (2015) Recurrent seizure-like events are associated with coupled astroglial synchronization. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00215
  67. Bedner P, Dupper A, Hüttmann K, Müller J, Herde MK, Dublin P, Deshpande T, Schramm J, Häussler U, Haas CA, Henneberger C, Theis M, Steinhäuser C (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138: 1208–1222. https://doi.org/10.1093/brain/awv067
  68. Pleiss MM, Furman JL, Abdul HM, Norris CM (2014) P3-069: A NOVEL REAGENT MODULATES CN/CX43 INTERACTIONS DURING THE PROGRESSION OF ALZHEIMER’S DISEASE. Alzheimer’s Dement 10. https://doi.org/10.1016/j.jalz.2014.05.1157
  69. Plata-Salaman CR (2002) Brain cytokines and disease. Acta Neuropsychiatr 14: 262–278. https://doi.org/10.1034/j.1601-5215.2002.140602.x
  70. Smith AM, Dragunow M (2014) The human side of microglia. Trends Neurosci 37: 125–135. https://doi.org/10.1016/j.tins.2013.12.001
  71. Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117: 395–400. https://doi.org/10.1083/jcb.117.2.395
  72. Kim SY, Senatorov VV, Morrissey CS, Lippmann K, Vazquez O, Milikovsky DZ, Gu F, Parada I, Prince DA, Becker AJ, Heinemann U, Friedman A, Kaufer D (2017) TGFβ signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults. Sci Rep 7: 7711. https://doi.org/10.1038/s41598-017-07394-3
  73. Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136: 10–17. https://doi.org/10.1111/jnc.13062
  74. Paolicelli RC, Sierra A, Stevens B, Tremblay M-E, Aguzzi A, Ajami B, Amit I, Audinat E, Bechmann I, Bennett M, Bennett F, Bessis A, Biber K, Bilbo S, Blurton-Jones M, Boddeke E, Brites D, Brône B, Brown GC, Butovsky O, Carson MJ, Castellano B, Colonna M, Cowley SA, Cunningham C, Davalos D, De Jager PL, de Strooper B, Denes A, Eggen BJL, Eyo U, Galea E, Garel S, Ginhoux F, Glass CK, Gokce O, Gomez-Nicola D, González B, Gordon S, Graeber MB, Greenhalgh AD, Gressens P, Greter M, Gutmann DH, Haass C, Heneka MT, Heppner FL, Hong S, Hume DA, Jung S, Kettenmann H, Kipnis J, Koyama R, Lemke G, Lynch M, Majewska A, Malcangio M, Malm T, Mancuso R, Masuda T, Matteoli M, McColl BW, Miron VE, Molofsky AV, Monje M, Mracsko E, Nadjar A, Neher JJ, Neniskyte U, Neumann H, Noda M, Peng B, Peri F, Perry VH, Popovich PG, Pridans C, Priller J, Prinz M, Ragozzino D, Ransohoff RM, Salter MW, Schaefer A, Schafer DP, Schwartz M, Simons M, Smith CJ, Streit WJ, Tay TL, Tsai L-H, Verkhratsky A, von Bernhardi R, Wake H, Wittamer V, Wolf SA, Wu L-J, Wyss-Coray T (2022) Microglia states and nomenclature: A field at its crossroads. Neuron 110: 3458–3483. https://doi.org/10.1016/j.neuron.2022.10.020

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Relative expression of astrocyte activation marker genes (S100b) and microglial cells (Aif1) in the temporal cortex (TC), dorsal (DH) and ventral (VH) hippocampus of rats 7 days after epileptic status. * p < 0.05, ** p < 0.01, *** p < 0.001 in ANOVA with the a posteriori Tukey criterion or ANOVA with the Welch correction and the a posteriori Games–Howell criterion. S100b: TC: F(2, 27) = 12.5, p = 0.002; DH: F(2, 23) = 18.9, p < 0.001; VH: F(2, 25) = 60.3, p < 0.001; Aif1: TC: F(2, 11.9) = 31.3, p < 0.001; DH: F(2, 9.6) = 168.6, p < 0.001; VH: F(2, 13.4) = 697.7, p < 0.001.

Download (139KB)
3. Fig. 2. Relative expression of glutamate transporter genes EAAT1 (Slc1a3), glutamine synthetase (Glul) and the protein of the connexin 43 (Gja1) family of slit contacts in the temporal cortex (TC), dorsal (DH) and ventral (VH) hippocampus of rats 7 days after epileptic status. * p < 0.05, ** p < 0.01, *** p < 0.001 in ANOVA with the a posteriori Tukey criterion or ANOVA with the Welch correction and the a posteriori Games–Howell criterion. Slc1a3: TC: F(2, 26) = 2.3, p = 0.12; DH: F(2, 23) = 11.3, p < 0.001; VH: F(2, 14.34) = 73.06, p < 0.001; Glul: TC: F(2, 25) = 1.36, p = 0.27; DH: F(2, 20) = 20.8, p < 0.001; VH: F(2, 16.25) = 33.56, p < 0.001; Gja1: TC: F(2, 12.65) = 9.47, p < 0.01; DH: F(2, 21) = 8.54, p < 0.01; VH: F(2, 29) = 41.8, p < 0.001.

Download (180KB)
4. 3. Relative expression of genes of the main protein of Nlrp3 inflammasome, proinflammatory cytokine Il1b, anti-inflammatory cytokine Il1rn and pleiotropic cytokine Tgfb1 in the temporal cortex (TC), dorsal (DH) and ventral (VH) hippocampus of rats 7 days after epileptic status. * p < 0.05, ** p < 0.01, *** p < 0.001 in ANOVA with the a posteriori Tukey criterion or ANOVA with the Welch correction and the a posteriori Games–Howell criterion. Nlrp3: TC: F(2, 28) = 36.7, p < 0.001; DH: F(2, 21) = 66.1, p < 0.001; VH: F(2, 12.2) = 152.9, p < 0.001; Il1b: TC: F(2, 27) = 8.4, p < 0.01; DH: F(2, 19) = 13.85, p < 0.001; VH: F(2, 12.5) = 51.67, p < 0.001; Il1rn: TC: F(2, 28) = 10.46, p < 0.001; DH: F(2, 23) = 67.58, p < 0.001; VH: F(2, 13.97) = 326.4, p < 0.001.

Download (213KB)
5. 4. Relative expression of astrocyte polarization marker genes: markers of A1 (Lcn2, Gbp2) and A2 (S100a10, Ptx3) states in the temporal cortex (TC), dorsal (DH) and ventral (VH) hippocampus of rats 7 days after epileptic status. * p < 0.05, ** p < 0.01, *** p < 0.001 in ANOVA with the a posteriori Tukey criterion or ANOVA with the Welch correction and the a posteriori Games–Howell criterion. Lcn2: TC: F(2, 24) = 14.82, p < 0.001; DH: F(2, 21) = 16.0, p < 0.001; VH: F(2, 15.45) = 89.87, p < 0.001; Gbp2: TC: F(2, 27) = 7.58, p < 0.01; DH: F(2, 22) = 17.37, p < 0.001; VH: F(2, 12.38) = 101.2, p < 0.001; S100a10: TC: F(2, 28) = 16.65, p < 0.001; DH: F(2, 10.25) = 22.68, p < 0.001; VH: F(2, 14.02) = 199.9, p < 0.001; Ptx3: TC: F(2, 13.88) = 17.65, p < 0.001; DH: F(2, 9.8) = 12.21, p < 0.01; VH: F(2, 26) = 25.74, p < 0.001.

Download (215KB)
6. 5. Relative expression of microglial cell polarization marker genes: markers of M1 (Nos2) and M2 (Arg1) states in the temporal cortex (TC), dorsal (DH) and ventral (VH) hippocampus of rats 7 days after epileptic status. * p < 0.05, ** p < 0.01, *** p < 0.001 in ANOVA with the a posteriori Tukey criterion or ANOVA with the Welch correction and the a posteriori Games–Howell criterion. Nos2: TC: F(2, 28) = 11.07, p < 0.001; DH: F(2, 21) = 0.53, p = 0.596; VH: F(2, 23) = 0.063, p = 0.94; Arg1: TC: F(2, 13.96) = 5.183, p < 0.05; DH: F(2, 22) = 15.59, p < 0.001; VH: F(2, 28) = 1.322, p = 0.283.

Download (133KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies