Disorder of myelinization in the spinal cord of transgenic mSOD1 mice as one of the mechanisms pathogenesis of amyotrophic lateral sclerosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Amyotrophic lateral sclerosis (ALS) is a disease characterized by progressive muscle weakness, atrophy, spasticity, paralysis caused by degeneration and death of motor neurons in the brain and spinal cord, leading to death. Model animals such as SOD1-G93A mice expressing a human mutation of the gene encoding the antioxidant enzyme superoxide dismutase 1 are widely used to study the pathogenesis of ALS and its treatment. Transgenic mice exhibit disease phenotypes similar to ALS patients, expressed in motor function impairment, motor neuron degeneration in the spinal cord, brainstem, and cortex, leading to paralysis of the hind limbs and death. In the present work, the areas of transverse serial sections of the lumbar enlargement of the spinal cord, as well as the areas occupied by white and gray matter in these sections were estimated using light microscopy in wild-type WT mice and transgenic mSOD1 mice at different stages of ALS development. The revealed reduction in the volume of the lumbar enlargement of the spinal cord in transgenic mice is detected already at the early presymptomatic stage of the disease and is due to a decrease in the volumes of both gray and white matter. A decrease in the number of neurons in the gray matter of the spinal cord, a characteristic sign of ALS caused by the death of these cells, was detected in transgenic mice only at the symptomatic stage of the disease. Using fluorescence microscopy, a decrease in the fluorescence intensity of fluoromyelin, a specific myelin dye, in the white matter of the lumbar enlargement of the spinal cord in transgenic mice was established starting from the early presymptomatic stage. The revealed morphological changes in the lumbar spinal cord of transgenic mSOD1 mice allow us to conclude that already at the early pre-symptomatic stage of ALS, demyelination processes develop, most likely arising as a result of disruption of the functioning of myelin-forming cells.

About the authors

O. V. Tyapkina

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan State Medical University

Email: anti-toxin@mail.ru
Kazan, Russia; Kazan, Russia

M. A. Mukhamedyarov

Kazan State Medical University

Kazan, Russia

L. F. Nurullin

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS; Kazan State Medical University

Kazan, Russia; Kazan, Russia

References

  1. Duyckaerts C, Maisonobe T, Hauw JJ, Seilhean D (2021) Charcot identifies and illustrates amyotrophic lateral sclerosis. Free Neuropathol 2: 12. https://doi.org/10.17879/freeneuropathology-2021-3323
  2. Zarei S, Carr K, Reiley L, Diaz K, Guerra O, Altamirano PF, Pagani W, Lodin D, Orozco G, Chinea A (2015) A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 6: 171. https://doi.org/10.4103/2152-7806.169561
  3. Grad LI, Rouleau GA, Ravits J, Cashman NR (2017) Clinical Spectrum of Amyotrophic Lateral Sclerosis (ALS). Cold Spring Harb Perspect Med 7: a024117. https://doi.org/10.1101/cshperspect.a024117
  4. Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: Аn update of recent literature. Curr Opin Neurol 32: 771–776. https://doi.org/10.1097/wco.0000000000000730
  5. Forsberg K, Andersen PM, Marklund SL, Brännström T (2011) Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol 121: 623–634. https://doi.org/10.1007/s00401-011-0805-3
  6. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak–Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62. https://doi.org/10.1038/362059a0
  7. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ (2011) Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol 7: 616–630. https://doi.org/10.1038/nrneurol.2011.152
  8. Boillée S, Vande Velde C, Cleveland DW (2006) ALS: А disease of motor neurons and their nonneuronal neighbors. Neuron 52: 39–59. https://doi.org/10.1016/j.neuron.2006.09.018
  9. Lee AJB, Kittel TE, Kim RB, Bach TN, Zhang T, Mitchell CS (2023) Comparing therapeutic modulators of the SOD1 G93A Amyotrophic Lateral Sclerosis mouse pathophysiology. Front Neurosci 16: 1111763. https://doi.org/10.3389/fnins.2022.1111763
  10. Mourelatos Z, Gonatas NK, Stieber A, Gurney ME, Dal Canto MC (1996) The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci U S A 93: 5472–5477. https://doi.org/10.1073/pnas.93.11.5472
  11. Mohajeri MH, Figlewicz DA, Bohn MC (1998) Selective loss of alpha motoneurons innervating the medial gastrocnemius muscle in a mouse model of amyotrophic lateral sclerosis. Exp Neurol 150: 329–336. https://doi.org/10.1006/exnr.1998.6758
  12. Gadamski R, Chrapusta SJ, Wojda R, Grieb P (2006) Morphological changes and selective loss of motoneurons in the lumbar part of the spinal cord in a rat model of familial amyotrophic lateral sclerosis (fALS). Folia Neuropathol 44: 154–161.
  13. Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD (2019) Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 13: 532. https://doi.org/10.3389/fnins.2019.00532
  14. Clement AM, Nguyen MD, Roberts EA, Garcia ML, Boillée S, Rule M, McMahon AP, Doucette W, Siwek D, Ferrante RJ, Brown RH Jr, Julien JP, Goldstein LS, Cleveland DW (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302: 113–117. https://doi.org/10.1126/science.1086071
  15. Yamanaka K, Chun SJ, Boillee S, Fujimori-Tonou N, Yamashita H, Gutmann DH, Takahashi R, Misawa H, Cleveland DW (2008) Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat Neurosci 11: 251–253. https://doi.org/10.1038/nn2047
  16. Wootz H, Fitzsimons-Kantamneni E, Larhammar M, Rotterman TM, Enjin A, Patra K, André E, Van Zundert B, Kullander K, Alvarez FJ (2013) Alterations in the motor neuron-renshaw cell circuit in the Sod1(G93A) mouse model. J Comp Neurol 521: 1449–1469. https://doi.org/10.1002/cne.23266
  17. Kim J, Hughes EG, Shetty AS, Arlotta P, Goff LA, Bergles DE, Brown SP (2017) Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease. J Neurosci 37: 9037–9053. https://doi.org/10.1523/jneurosci.0811-17.2017
  18. Vaughan SK, Sutherland NM, Zhang S, Hatzipetros T, Vieira F, Valdez G (2018) The ALS-inducing factors, TDP43A315T and SOD1G93A, directly affect and sensitize sensory neurons to stress. Sci Rep 8: 16582. https://doi.org/10.1038/s41598-018-34510-8
  19. Neumann M, Kwong LK, Truax AC, Vanmassenhove B, Kretzschmar HA, Van Deerlin VM, Clark CM, Grossman M, Miller BL, Trojanowski JQ, Lee VM (2007) TDP-43-positive white matter pathology in frontotemporal lobar degeneration with ubiquitin-positive inclusions. J Neuropathol Exp Neurol 66: 177–183. https://doi.org/10.1097/01.jnen.0000248554.45456.58
  20. Niebroj-Dobosz I, Rafałowska J, Fidziańska A, Gadamski R, Grieb P (2007) Myelin composition of spinal cord in a model of amyotrophic lateral sclerosis (ALS) in SOD1G93A transgenic rats. Folia Neuropathol 45: 236–241. https://www.termedia.pl/Myelin-composition-of-spinal-cord-in-a-model-of-amyotrophic-lateral-sclerosis-ALS-in-SOD1-G93A-transgenic-rats,20,9578,1,1.html
  21. Petrik MS, Wilson JM, Grant SC, Blackband SJ, Tabata RC, Shan X, Krieger C, Shaw CA (2007) Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals widespread neural deficits. Neuromolecular Med 9: 216–229. https://doi.org/10.1007/s12017-007-8002-1
  22. Kang SH, Li Y, Fukaya M, Lorenzini I, Cleveland DW, Ostrow LW, Rothstein JD, Bergles DE (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16: 571–579. https://doi.org/10.1038/nn.3357
  23. Heiman-Patterson TD, Deitch JS, Blankenhorn EP, Erwin KL, Perreault MJ, Alexander BK, Byers N, Toman I, Alexander GM (2005) Background and gender effects on survival in the TgN(SOD1-G93A)1Gur mouse model of ALS. J Neurol Sci 236: 1–7. https://doi.org/10.1016/j.jns.2005.02.006
  24. Monsma PC, Brown A (2012) FluoroMyelin™ Red is a bright, photostable and non-toxic fluorescent stain for live imaging of myelin. J Neurosci Methods 209: 344–350. https://doi.org/10.1016/j.jneumeth.2012.06.015
  25. Wang W, Kang S, Coto Hernández I, Jowett N (2019) A Rapid Protocol for Intraoperative Assessment of Peripheral Nerve Myelinated Axon Count and Its Application to Cross-Facial Nerve Grafting. Plast Reconstr Surg 143: 771–778. https://doi.org/10.1097/prs.0000000000005338
  26. Zhou T, Ahmad TK, Gozda K, Truong J, Kong J, Namaka M (2017) Implications of white matter damage in amyotrophic lateral sclerosis (Review). Mol Med Rep 16: 4379–4392. https://doi.org/10.3892/mmr.2017.7186
  27. Martin LJ, Price AC, Kaiser A, Shaikh AY, Liu Z (2000) Mechanisms for neuronal degeneration in amyotrophic lateral sclerosis and in models of motor neuron death (Review). Int J Mol Med 5: 3–13. https://doi.org/10.3892/ijmm.5.1.3
  28. Olney NT, Bischof A, Rosen H, Caverzasi E, Stern WA, Lomen-Hoerth C, Miller BL, Henry RG, Papinutto N (2018) Measurement of spinal cord atrophy using phase sensitive inversion recovery (PSIR) imaging in motor neuron disease. PLoS One 13: e0208255. https://doi.org/10.1371/journal.pone.0208255
  29. Stephens B, Guiloff RJ, Navarrete R, Newman P, Nikhar N, Lewis P (2006) Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study. J Neurol Sci 244: 41–58. https://doi.org/10.1016/j.jns.2005.12.003
  30. Crabé R, Aimond F, Gosset P, Scamps F, Raoul C (2020) How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 9: 2550. https://doi.org/10.3390/cells9122550
  31. Zakharova MN, Abramova AA (2022) Lower and upper motor neuron involvement and their impact on disease prognosis in amyotrophic lateral sclerosis. Neural Regen Res 17: 65–73. https://doi.org/10.4103/1673-5374.314289
  32. Guo YS, Wu DX, Wu HR, Wu SY, Yang C, Li B, Bu H, Zhang YS, Li CY (2009) Sensory involvement in the SOD1-G93A mouse model of amyotrophic lateral sclerosis. Exp Mol Med 41: 140–150. https://doi.org/10.3858/emm.2009.41.3.017
  33. Lev N, Barhum Y, Lotan I, Steiner I, Offen D (2015) DJ-1 knockout augments disease severity and shortens survival in a mouse model of ALS. PLoS One 10: e0117190. https://doi.org/10.1371/journal.pone.0117190
  34. Rafałowska J, Dziewulska D (1996) White matter injury in amyotrophic lateral sclerosis (ALS). Folia Neuropathol 34: 87–91. https://europepmc.org/article/MED/8791897
  35. Li J, Zhang L, Chu Y, Namaka M, Deng B, Kong J, Bi X (2016) Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology. Front Cell Neurosci 10: 119. https://doi.org/10.3389/fncel.2016.00119
  36. Perrie WT, Lee GT, Curtis EM, Sparke J, Buller JR, Rossi ML (1993) Changes in the myelinated axons of femoral nerve in amyotrophic lateral sclerosis. J Neural Transm Suppl 39: 223–233. https://europepmc.org/article/med/8360662
  37. Jahn O, Tenzer S, Werner HB (2009) Myelin proteomics: Мolecular anatomy of an insulating sheath. Mol Neurobiol 40: 55–72. https://doi.org/10.1007/s12035-009-8071-2
  38. Patzig J, Jahn O, Tenzer S, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev J, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Möbius W, Nave KA, Werner HB (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31: 16369–16386. https://doi.org/10.1523/jneurosci.4016-11.2011
  39. Stiefel KM, Torben-Nielsen B, Coggan JS (2013) Proposed evolutionary changes in the role of myelin. Front Neurosci 7: 202. https://doi.org/10.3389/fnins.2013.00202
  40. Saito S, Kidd GJ, Trapp BD, Dawson TM, Bredt DS, Wilson DA, Traystman RJ, Snyder SH, Hanley DF (1994) Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59: 447–56. https://doi.org/10.1016/0306-4522(94)90608-4
  41. Wang J, Ho WY, Lim K, Feng J, Tucker-Kellogg G, Nave KA, Ling SC (2018) Cell-autonomous requirement of TDP-43, an ALS/FTD signature protein, for oligodendrocyte survival and myelination. Proc Natl Acad Sci U S A. 115: E10941–E10950. https://doi.org/10.1073/pnas.1809821115
  42. Raffaele S, Boccazzi M, Fumagalli M (2021) Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 10: 565. https://doi.org/10.3390/cells10030565
  43. Kim S, Chung AY, Na JE, Lee SJ, Jeong SH, Kim E, Sun W, Rhyu IJ, Park HC (2019) Myelin degeneration induced by mutant superoxide dismutase 1 accumulation promotes amyotrophic lateral sclerosis. Glia 67: 1910–1921. https://doi.org/10.1002/glia.23669
  44. Philips T, Rothstein JD (2017) Oligodendroglia: Мetabolic supporters of neurons. J Clin Invest 127: 3271–3280. https://doi.org/10.1172/jci90610
  45. Alves CJ, de Santana LP, dos Santos AJ, de Oliveira GP, Duobles T, Scorisa JM, Martins RS, Maximino JR, Chadi G (2011) Early motor and electrophysiological changes in transgenic mouse model of amyotrophic lateral sclerosis and gender differences on clinical outcome. Brain Res 1394: 90–104.
  46. Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A (2021) Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 22: 3426. https://doi.org/10.3390/ijms22073426
  47. Guipponi M, Li QX, Hyde L, Beissbarth T, Smyth GK, Masters CL, Scott HS (2010) SAGE analysis of genes differentially expressed in presymptomatic TgSOD1G93A transgenic mice identified cellular processes involved in early stage of ALS pathology. J Mol Neurosci 41: 172–182. https://doi.org/10.1007/s12031-009-9317-1
  48. Silverman JM, Christy D, Shyu CC, Moon KM, Fernando S, Gidden Z, Cowan CM, Ban Y, Stacey RG, Grad LI, McAlary L, Mackenzie IR, Foster LJ, Cashman NR (2019) CNS-derived extracellular vesicles from superoxide dismutase 1 (SOD1)G93A ALS mice originate from astrocytes and neurons and carry misfolded SOD1. J Biol Chem 294: 3744–3759. https://doi.org/10.1074/jbc.ra118.004825
  49. Golubczyk D, Malysz-Cymborska I, Kalkowski L, Janowski M, Coates JR, Wojtkiewicz J, Maksymowicz W, Walczak P (2019) The Role of Glia in Canine Degenerative Myelopathy: Relevance to Human Amyotrophic Lateral Sclerosis. Mol Neurobiol 56: 5740–5748. https://doi.org/10.1007/s12035-019-1488-3
  50. Magnus T, Carmen J, Deleon J, Xue H, Pardo AC, Lepore AC, Mattson MP, Rao MS, Maragakis NJ (2008) Adult glial precursor proliferation in mutant SOD1G93A mice. Glia 56: 200–208. https://doi.org/10.1002/glia.20604
  51. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71: 2041–2048. https://doi.org/10.1046/j.1471-4159.1998.71052041.x
  52. Cunha-Oliveira T, Montezinho L, Mendes C, Firuzi O, Saso L, Oliveira PJ, Silva FSG (2020) Oxidative Stress in Amyotrophic Lateral Sclerosis: Pathophysiology and Opportunities for Pharmacological Intervention. Oxid Med Cell Longev 2020: 5021694. https://doi.org/10.1155/2020/5021694

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».