Regulation of intracellular calcium during high-frequency rhythmic stimulation of the motor nerve ending of a frog

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Under physiological conditions, chemical synapses, including neuromuscular junctions, operate rhythmically at different frequencies depending on the functional type of muscle and the state of synaptic contact. Calcium ions (Ca2+) entering the axoplasm through voltage-gated Ca2+ channels during each action potential activate exocytosis of synaptic vesicles and play a key role in modulating the secretory process. The endoplasmic reticulum (ER), which can release Ca2+ ions via Ca2+-dependent release, may contribute significantly to intracellular Ca2+ dynamics. Optical recording techniques using Ca2+-sensitive fluorescent dyes are used to monitor changes in intracellular Ca2+. However, such an evaluation must pay special attention to the dye's binding characteristics with Ca²⁺ ions, specifically its affinity, because the degree of dye saturation affects the parameters of the Ca²⁺ response being investigated. In this study, the low-affinity dye Magnesium Green was used to analyze changes in the intracellular Ca2+ ions concentration in the neuromuscular synapse m. cutaneus pectoris of the frog during rhythmic stimulation, which allows correct assessment of Ca2+ signals. With increasing frequency of motor nerve stimulation, the smooth increase at 20 Hz of Ca2+ response was replaced by a biphasic increase at 50 Hz and a sharp increase at 70 Hz. This indicates the inclusion of additional Ca2+ sources, which may be the ER. Blocking ryanodine and inositol receptors abolished the increase in Ca2+ response at higher frequencies of nerve stimulation. Blocking Ca2+ ATPases ER (SERCA) resulted in a dramatic increase in the Ca2+ response and eliminated its multiphasic character. It is shown that the change in Ca2+ transient reflects the accumulation of intracellular Ca2+ in the axoplasm and depends on the activity of SERCA, ryanodine and inositol receptors. The use of a low affinity fluorescent Ca2+ dye makes it possible to track the contribution of these systems to the formation of the intracellular concentration of the main ions that determine the process of neurosecretion.

About the authors

D. V. Samigullin

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center; Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A.N. Tupolev – KAI”

Email: samid75@mail.ru
Kazan, Russia; Kazan, Russia

N. F. Fatikhov

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center

Kazan, Russia

E. F. Khaziev

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center

Kazan, Russia

E. A. Bukharaeva

Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center

Kazan, Russia

References

  1. Katz B, Miledi R (1965) The Effect of Calcium on Acetylcholine Release from Motor Nerve Terminals. Proc R Soc B Biol Sci 161: 496–503. https://doi.org/10.1098/rspb.1965.0017
  2. Schweizer FE, Betz H, Augustine GJ (1995) From vesicle docking to endocytosis: Intermediate reactions of exocytosis. Neuron 14: 689–696. https://doi.org/10.1016/0896-6273(95)90213-9
  3. Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca2+-induced Ca2+ Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/jgp.112.5.593
  4. Suzuki S ichi, Osanai M, Murase M, Suzuki N, Ito K, Shirasaki T, Narita K, Ohnuma K, Kuba K, Kijima H (2000) Ca2+ dynamics at the frog motor nerve terminal. Pflugers Arch Eur J Physiol 440: 351–365. https://doi.org/10.1007/S004240000278
  5. Narita K, Suzuki N, Himi N, Murayama T, Nakagawa T, Okabe N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Miyamoto O, Kuba K (2019) Effects of intravesicular loading of a Ca2+ chelator and depolymerization of actin fibers on neurotransmitter release in frog motor nerve terminals. Eur J Neurosci 50: 1700–1711. https://doi.org/10.1111/ejn.14353
  6. Galante M, Marty A (2003) Presynaptic Ryanodine-Sensitive Calcium Stores Contribute to Evoked Neurotransmitter Release at the Basket Cell-Purkinje Cell Synapse. J Neurosci 23: 11229–11234. https://doi.org/10.1523/JNEUROSCI.23-35-11229.2003
  7. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29: 197–208. https://doi.org/10.1016/S0896-6273(01)00190-8
  8. Conti R, Tan YP, Llano I (2004) Action Potential-Evoked and Ryanodine-Sensitive Spontaneous Ca2+ Transients at the Presynaptic Terminal of a Developing CNS Inhibitory Synapse. J Neurosci 24: 6946–6957. https://doi.org/10.1523/JNEUROSCI.1397-04.2004
  9. Smith AB, Cunnane TC (1996) Ryanodine-sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea-pig. J Physiol 497: 657–664. https://doi.org/10.1113/JPHYSIOL.1996.SP021797
  10. Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85: 201–279. https://doi.org/10.1152/physrev.00004.2004
  11. McGraw CF, Somlyo AV, Blaustein MP (1980) Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol 85: 228–241. https://doi.org/10.1083/JCB.85.2.228
  12. Hartter DE, Burton PR, Laveri LA (1987) Distribution and calcium-sequestering ability of smooth endoplasmic reticulum in olfactory axon terminals of frog brain. Neuroscience 23: 371–386. https://doi.org/10.1016/0306-4522(87)90297-1
  13. Bouchard R, Pattarini R, Geiger JD (2003) Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 69: 391–418. https://doi.org/10.1016/S0301-0082(03)00053-4
  14. Castejón OJ, Apkarian RP (1992) Conventional and high resolution scanning electron microscopy of outer and inner surface features of cerebellar nerve cells. J Submicrosc Cytol Pathol 24: 549–562.
  15. Blaustein MP, McGraw CF, Somlyo AV, Schweitzer ES (1980) How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 76: 459–470.
  16. Westrum LE, Gray EG (1986) New observations on the substructure of the active zone of brain synapses and motor endplates. Proc R Soc London Ser B Biol Sci 229: 29–38. https://doi.org/10.1098/rspb.1986.0072
  17. Balezina OP, Bogacheva PO, Orlova TY (2007) Effect of L-type calcium channel blockers on activity of newly formed synapses in mice. Bull Exp Biol Med 143: 171–174. https://doi.org/10.1007/s10517-007-0041-y
  18. Балезина ОП, Букин АН, Лаптева ВИ (2001) Влияние дантролена и рианодина на вызванную активность нервно-мышечных синапсов у мышей. 87: 1511–1517. [Balezina OP, Bukin AN, Lapteva VI (2001) Effects of dantrolene and ryanodine on the evoked activity of neuromuscular synapses in mice. Russ J Physiol 87: 1511–1517. (In Russ)].
  19. Zucker RS, Regehr WG (2002) Short-Term Synaptic Plasticity. Annu Rev Physiol 64: 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547
  20. Narita K, Akita T, Hachisuka J, Huang SM, Ochi K, Kuba K (2000) Functional coupling of Ca2+ channels to ryanodine receptors at presynaptic terminals: Amplification of exocytosis and plasticity. J Gen Physiol 115: 519–532. https://doi.org/10.1085/JGP.115.4.519
  21. Verkhratsky A (2004) Endoplasmic reticulum calcium signaling in nerve cells. Biol Res 37: 693–699. https://doi.org/10.4067/s0716-97602004000400027
  22. Khuzakhmetova VF, Samigullin DV, Bukharaeva EA (2014) The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction. Biochem Suppl Ser A Membr Cell Biol 8: 144–152. https://doi.org/10.1134/S199074781305005X
  23. Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28: 8577–8589. https://doi.org/10.1523/JNEUROSCI.1437-08.2008,
  24. Bullen A, Saggau P (1999) Optical Recording from Individual Neurons in Culture. In: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, pp 89–126.
  25. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450. https://doi.org/10.1016/S0021-9258(19)83641-4
  26. Tsien RY (1989) Fluorescent Indicators of Ion Concentrations. Methods Cell Biol 30: 127–156. https://doi.org/10.1016/S0091-679X(08)60978-4
  27. Adams SR (2010) How Calcium Indicators Work. Cold Spring Harb Protoc 2010(3): pdb.top70. https://doi.org/10.1101/pdb.top70
  28. Tank DW, Regehr WG, Delaney KR (1995) A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J Neurosci 15: 7940–7952. https://doi.org/10.1523/JNEUROSCI.15-12-07940.1995
  29. Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68: 2156–2170. https://doi.org/10.1016/S0006-3495(95)80398-X
  30. Samigullin D, Fatikhov N, Khaziev E, Skorinkin A, Nikolsky E, Bukharaeva E (2015) Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes. Front Synaptic Neurosci 6: 29. https://doi.org/10.3389/FNSYN.2014.00029
  31. Samigullin DV, Bukharaeva EA (2025) Monitoring presynaptic calcium dynamics with membrane-impermeant fluorescent indicators in motor nerve endings. Biophys Rev. https://doi.org/10.1007/s12551-025-01336-4
  32. Vyshedskiy A, Allana T, Lin J-W (2000) Analysis of Presynaptic Ca2+ Influx and Transmitter Release Kinetics during Facilitation at the Inhibitor of the Crayfish Neuromuscular Junction. J Neurosci 20: 6326–6332. https://doi.org/10.1523/JNEUROSCI.20-17-06326.2000
  33. Vyshedskiy A, Lin JW (2000) Presynaptic Ca(2+) influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution. J Neurophysiol 83: 552–562. https://doi.org/10.1152/jn.2000.83.1.552
  34. Borst JGG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506: 143–157. https://doi.org/10.1111/j.1469-7793.1998.143bx.x
  35. Peng Y, Zucker RS (1993) Release of LHRH is linearly related to the time integral of presynaptic Ca+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10: 465–473. https://doi.org/10.1016/0896-6273(93)90334-N
  36. Wu LG, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17: 769–779. https://doi.org/10.1016/s0896-6273(00)80208-1
  37. Samigullin DV, Khaziev EF, Zhilyakov NV, Bukharaeva EA, Nikolsky EE (2017) Loading a Calcium Dye into Frog Nerve Endings Through the Nerve Stump: Calcium Transient Registration in the Frog Neuromuscular Junction. J Vis Exp (125): 55122. https://doi.org/10.3791/55122
  38. Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82: 893–922. https://doi.org/10.1152/physrev.00013.2002
  39. De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, Sorrentino V, Missiaen L (1999) Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium 26: 9–13. https://doi.org/10.1054/CECA.1999.0047
  40. Castonguay A, Robitaille R (2002) Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium 32: 39–47. https://doi.org/10.1016/s0143-4160(02)00093-3
  41. Kubota M, Narita K, Murayama T, Suzuki S, Soga S, Usukura J, Ogawa Y, Kuba K (2005) Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals. Cell Calcium 38: 557–567. https://doi.org/10.1016/j.ceca.2005.07.008
  42. Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, Kuba K (2002) Ca2+ -Dependent Ca2+ Clearance Via Mitochondrial Uptake and Plasmalemmal Extrusion in Frog Motor Nerve Terminals. J Neurophysiol 87: 1816–1823. https://doi.org/10.1152/jn.00456.2001
  43. Soga-Sakakibara S, Kubota M, Suzuki S, Akita T, Narita K, Kuba K (2010) Calcium dependence of the priming, activation and inactivation of ryanodine receptors in frog motor nerve terminals. Eur J Neurosci 32: 948–962. https://doi.org/10.1111/j.1460-9568.2010.07381.x
  44. Sinha SR, Wu L-G, Saggau P (1997) Presynaptic Calcium Dynamics and Transmitter Release Evoked by Single Action Potentials at Mammalian Central Synapses. Biophys J 72: 637–651. https://doi.org/10.1016/S0006-3495(97)78702-2
  45. Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57: 313–324. https://doi.org/10.1016/S0006-3495(90)82533-9
  46. Lin J-W, Fu Q, Allana T (2005) Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. J Neurophysiol 94: 377–386. https://doi.org/10.1152/jn.00617.2004
  47. Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24: 345–357. https://doi.org/10.1016/S0143-4160(98)90058-6
  48. Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca2+-induced Ca2+ Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/JGP.112.5.593
  49. Castonguay A, Robitaille R (2001) Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21: 1911–1922. https://doi.org/10.1523/jneurosci.21-06-01911.2001
  50. Bennett MR, Farnell L, Gibson WG, Dickens P (2007) Mechanisms of calcium sequestration during facilitation at active zones of an amphibian neuromuscular junction. J Theor Biol 247: 230–241. https://doi.org/10.1016/j.jtbi.2007.03.022
  51. John LM, Lechleiter JD, Camacho P (1998) Differential Modulation of SERCA2 Isoforms by Calreticulin. J Cell Biol 142: 963. https://doi.org/10.1083/JCB.142.4.963
  52. He XP, Yang F, Xie ZP, Lu B (2000) Intracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3. J Cell Biol 149: 783. https://doi.org/10.1083/JCB.149.4.783

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».