Regulation of intracellular calcium during high-frequency rhythmic stimulation of the motor nerve ending of a frog
- Authors: Samigullin D.V.1,2, Fatikhov N.F.1, Khaziev E.F.1, Bukharaeva E.A.1
-
Affiliations:
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center
- Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A.N. Tupolev – KAI”
- Issue: Vol 111, No 9 (2025)
- Pages: 1558-1575
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0869-8139/article/view/352698
- DOI: https://doi.org/10.7868/S2658655X25090096
- ID: 352698
Cite item
Abstract
About the authors
D. V. Samigullin
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center; Federal State Budgetary Educational Institution of Higher Education “Kazan National Research Technical University named after A.N. Tupolev – KAI”
Email: samid75@mail.ru
Kazan, Russia; Kazan, Russia
N. F. Fatikhov
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific CenterKazan, Russia
E. F. Khaziev
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific CenterKazan, Russia
E. A. Bukharaeva
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific CenterKazan, Russia
References
- Katz B, Miledi R (1965) The Effect of Calcium on Acetylcholine Release from Motor Nerve Terminals. Proc R Soc B Biol Sci 161: 496–503. https://doi.org/10.1098/rspb.1965.0017
- Schweizer FE, Betz H, Augustine GJ (1995) From vesicle docking to endocytosis: Intermediate reactions of exocytosis. Neuron 14: 689–696. https://doi.org/10.1016/0896-6273(95)90213-9
- Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca2+-induced Ca2+ Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/jgp.112.5.593
- Suzuki S ichi, Osanai M, Murase M, Suzuki N, Ito K, Shirasaki T, Narita K, Ohnuma K, Kuba K, Kijima H (2000) Ca2+ dynamics at the frog motor nerve terminal. Pflugers Arch Eur J Physiol 440: 351–365. https://doi.org/10.1007/S004240000278
- Narita K, Suzuki N, Himi N, Murayama T, Nakagawa T, Okabe N, Nakamura-Maruyama E, Hayashi N, Sakamoto I, Miyamoto O, Kuba K (2019) Effects of intravesicular loading of a Ca2+ chelator and depolymerization of actin fibers on neurotransmitter release in frog motor nerve terminals. Eur J Neurosci 50: 1700–1711. https://doi.org/10.1111/ejn.14353
- Galante M, Marty A (2003) Presynaptic Ryanodine-Sensitive Calcium Stores Contribute to Evoked Neurotransmitter Release at the Basket Cell-Purkinje Cell Synapse. J Neurosci 23: 11229–11234. https://doi.org/10.1523/JNEUROSCI.23-35-11229.2003
- Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29: 197–208. https://doi.org/10.1016/S0896-6273(01)00190-8
- Conti R, Tan YP, Llano I (2004) Action Potential-Evoked and Ryanodine-Sensitive Spontaneous Ca2+ Transients at the Presynaptic Terminal of a Developing CNS Inhibitory Synapse. J Neurosci 24: 6946–6957. https://doi.org/10.1523/JNEUROSCI.1397-04.2004
- Smith AB, Cunnane TC (1996) Ryanodine-sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea-pig. J Physiol 497: 657–664. https://doi.org/10.1113/JPHYSIOL.1996.SP021797
- Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85: 201–279. https://doi.org/10.1152/physrev.00004.2004
- McGraw CF, Somlyo AV, Blaustein MP (1980) Localization of calcium in presynaptic nerve terminals. An ultrastructural and electron microprobe analysis. J Cell Biol 85: 228–241. https://doi.org/10.1083/JCB.85.2.228
- Hartter DE, Burton PR, Laveri LA (1987) Distribution and calcium-sequestering ability of smooth endoplasmic reticulum in olfactory axon terminals of frog brain. Neuroscience 23: 371–386. https://doi.org/10.1016/0306-4522(87)90297-1
- Bouchard R, Pattarini R, Geiger JD (2003) Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 69: 391–418. https://doi.org/10.1016/S0301-0082(03)00053-4
- Castejón OJ, Apkarian RP (1992) Conventional and high resolution scanning electron microscopy of outer and inner surface features of cerebellar nerve cells. J Submicrosc Cytol Pathol 24: 549–562.
- Blaustein MP, McGraw CF, Somlyo AV, Schweitzer ES (1980) How is the cytoplasmic calcium concentration controlled in nerve terminals? J Physiol (Paris) 76: 459–470.
- Westrum LE, Gray EG (1986) New observations on the substructure of the active zone of brain synapses and motor endplates. Proc R Soc London Ser B Biol Sci 229: 29–38. https://doi.org/10.1098/rspb.1986.0072
- Balezina OP, Bogacheva PO, Orlova TY (2007) Effect of L-type calcium channel blockers on activity of newly formed synapses in mice. Bull Exp Biol Med 143: 171–174. https://doi.org/10.1007/s10517-007-0041-y
- Балезина ОП, Букин АН, Лаптева ВИ (2001) Влияние дантролена и рианодина на вызванную активность нервно-мышечных синапсов у мышей. 87: 1511–1517. [Balezina OP, Bukin AN, Lapteva VI (2001) Effects of dantrolene and ryanodine on the evoked activity of neuromuscular synapses in mice. Russ J Physiol 87: 1511–1517. (In Russ)].
- Zucker RS, Regehr WG (2002) Short-Term Synaptic Plasticity. Annu Rev Physiol 64: 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547
- Narita K, Akita T, Hachisuka J, Huang SM, Ochi K, Kuba K (2000) Functional coupling of Ca2+ channels to ryanodine receptors at presynaptic terminals: Amplification of exocytosis and plasticity. J Gen Physiol 115: 519–532. https://doi.org/10.1085/JGP.115.4.519
- Verkhratsky A (2004) Endoplasmic reticulum calcium signaling in nerve cells. Biol Res 37: 693–699. https://doi.org/10.4067/s0716-97602004000400027
- Khuzakhmetova VF, Samigullin DV, Bukharaeva EA (2014) The role of presynaptic ryanodine receptors in regulation of the kinetics of the acetylcholine quantal release in the mouse neuromuscular junction. Biochem Suppl Ser A Membr Cell Biol 8: 144–152. https://doi.org/10.1134/S199074781305005X
- Tazerart S, Vinay L, Brocard F (2008) The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J Neurosci 28: 8577–8589. https://doi.org/10.1523/JNEUROSCI.1437-08.2008,
- Bullen A, Saggau P (1999) Optical Recording from Individual Neurons in Culture. In: Windhorst U, Johansson H (eds) Modern Techniques in Neuroscience Research. Springer, Berlin, pp 89–126.
- Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450. https://doi.org/10.1016/S0021-9258(19)83641-4
- Tsien RY (1989) Fluorescent Indicators of Ion Concentrations. Methods Cell Biol 30: 127–156. https://doi.org/10.1016/S0091-679X(08)60978-4
- Adams SR (2010) How Calcium Indicators Work. Cold Spring Harb Protoc 2010(3): pdb.top70. https://doi.org/10.1101/pdb.top70
- Tank DW, Regehr WG, Delaney KR (1995) A quantitative analysis of presynaptic calcium dynamics that contribute to short-term enhancement. J Neurosci 15: 7940–7952. https://doi.org/10.1523/JNEUROSCI.15-12-07940.1995
- Regehr WG, Atluri PP (1995) Calcium transients in cerebellar granule cell presynaptic terminals. Biophys J 68: 2156–2170. https://doi.org/10.1016/S0006-3495(95)80398-X
- Samigullin D, Fatikhov N, Khaziev E, Skorinkin A, Nikolsky E, Bukharaeva E (2015) Estimation of presynaptic calcium currents and endogenous calcium buffers at the frog neuromuscular junction with two different calcium fluorescent dyes. Front Synaptic Neurosci 6: 29. https://doi.org/10.3389/FNSYN.2014.00029
- Samigullin DV, Bukharaeva EA (2025) Monitoring presynaptic calcium dynamics with membrane-impermeant fluorescent indicators in motor nerve endings. Biophys Rev. https://doi.org/10.1007/s12551-025-01336-4
- Vyshedskiy A, Allana T, Lin J-W (2000) Analysis of Presynaptic Ca2+ Influx and Transmitter Release Kinetics during Facilitation at the Inhibitor of the Crayfish Neuromuscular Junction. J Neurosci 20: 6326–6332. https://doi.org/10.1523/JNEUROSCI.20-17-06326.2000
- Vyshedskiy A, Lin JW (2000) Presynaptic Ca(2+) influx at the inhibitor of the crayfish neuromuscular junction: a photometric study at a high time resolution. J Neurophysiol 83: 552–562. https://doi.org/10.1152/jn.2000.83.1.552
- Borst JGG, Sakmann B (1998) Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J Physiol 506: 143–157. https://doi.org/10.1111/j.1469-7793.1998.143bx.x
- Peng Y, Zucker RS (1993) Release of LHRH is linearly related to the time integral of presynaptic Ca+ elevation above a threshold level in bullfrog sympathetic ganglia. Neuron 10: 465–473. https://doi.org/10.1016/0896-6273(93)90334-N
- Wu LG, Betz WJ (1996) Nerve activity but not intracellular calcium determines the time course of endocytosis at the frog neuromuscular junction. Neuron 17: 769–779. https://doi.org/10.1016/s0896-6273(00)80208-1
- Samigullin DV, Khaziev EF, Zhilyakov NV, Bukharaeva EA, Nikolsky EE (2017) Loading a Calcium Dye into Frog Nerve Endings Through the Nerve Stump: Calcium Transient Registration in the Frog Neuromuscular Junction. J Vis Exp (125): 55122. https://doi.org/10.3791/55122
- Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82: 893–922. https://doi.org/10.1152/physrev.00013.2002
- De Smet P, Parys JB, Callewaert G, Weidema AF, Hill E, De Smedt H, Erneux C, Sorrentino V, Missiaen L (1999) Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-trisphosphate receptor and the endoplasmic-reticulum Ca2+ pumps. Cell Calcium 26: 9–13. https://doi.org/10.1054/CECA.1999.0047
- Castonguay A, Robitaille R (2002) Xestospongin C is a potent inhibitor of SERCA at a vertebrate synapse. Cell Calcium 32: 39–47. https://doi.org/10.1016/s0143-4160(02)00093-3
- Kubota M, Narita K, Murayama T, Suzuki S, Soga S, Usukura J, Ogawa Y, Kuba K (2005) Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals. Cell Calcium 38: 557–567. https://doi.org/10.1016/j.ceca.2005.07.008
- Suzuki S, Osanai M, Mitsumoto N, Akita T, Narita K, Kijima H, Kuba K (2002) Ca2+ -Dependent Ca2+ Clearance Via Mitochondrial Uptake and Plasmalemmal Extrusion in Frog Motor Nerve Terminals. J Neurophysiol 87: 1816–1823. https://doi.org/10.1152/jn.00456.2001
- Soga-Sakakibara S, Kubota M, Suzuki S, Akita T, Narita K, Kuba K (2010) Calcium dependence of the priming, activation and inactivation of ryanodine receptors in frog motor nerve terminals. Eur J Neurosci 32: 948–962. https://doi.org/10.1111/j.1460-9568.2010.07381.x
- Sinha SR, Wu L-G, Saggau P (1997) Presynaptic Calcium Dynamics and Transmitter Release Evoked by Single Action Potentials at Mammalian Central Synapses. Biophys J 72: 637–651. https://doi.org/10.1016/S0006-3495(97)78702-2
- Sala F, Hernández-Cruz A (1990) Calcium diffusion modeling in a spherical neuron. Relevance of buffering properties. Biophys J 57: 313–324. https://doi.org/10.1016/S0006-3495(90)82533-9
- Lin J-W, Fu Q, Allana T (2005) Probing the endogenous Ca2+ buffers at the presynaptic terminals of the crayfish neuromuscular junction. J Neurophysiol 94: 377–386. https://doi.org/10.1152/jn.00617.2004
- Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24: 345–357. https://doi.org/10.1016/S0143-4160(98)90058-6
- Narita K, Akita T, Osanai M, Shirasaki T, Kijima H, Kuba K (1998) A Ca2+-induced Ca2+ Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals. J Gen Physiol 112: 593–609. https://doi.org/10.1085/JGP.112.5.593
- Castonguay A, Robitaille R (2001) Differential regulation of transmitter release by presynaptic and glial Ca2+ internal stores at the neuromuscular synapse. J Neurosci 21: 1911–1922. https://doi.org/10.1523/jneurosci.21-06-01911.2001
- Bennett MR, Farnell L, Gibson WG, Dickens P (2007) Mechanisms of calcium sequestration during facilitation at active zones of an amphibian neuromuscular junction. J Theor Biol 247: 230–241. https://doi.org/10.1016/j.jtbi.2007.03.022
- John LM, Lechleiter JD, Camacho P (1998) Differential Modulation of SERCA2 Isoforms by Calreticulin. J Cell Biol 142: 963. https://doi.org/10.1083/JCB.142.4.963
- He XP, Yang F, Xie ZP, Lu B (2000) Intracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3. J Cell Biol 149: 783. https://doi.org/10.1083/JCB.149.4.783
Supplementary files


