Role of Trace Amines and Their Receptors in Neuroinflammation Development and Posttraumatic Spinal Cord and Brain Repair
- Authors: Buglinina A.D.1, Romanyuk E.A.1, Milov S.I.1, Chesnokov A.A.1, Kalinina D.S.1,2,3, Musienko P.E.4,5,6
-
Affiliations:
- Sirius University of Science and Technology
- St Petersburg State University, Institute of Translational Biomedicine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Pavlov Institute of Physiology, Russian Academy of Sciences
- LIFT Center (Life Improvement by Future Technologies)
- Federal Center for Brain and Neurotechnologies
- Issue: Vol 111, No 8 (2025)
- Pages: 1379-1403
- Section: REVIEW
- URL: https://journals.rcsi.science/0869-8139/article/view/313174
- DOI: https://doi.org/10.7868/S2658655X25080071
- EDN: https://elibrary.ru/naxobt
- ID: 313174
Cite item
Abstract
About the authors
A. D. Buglinina
Sirius University of Science and TechnologySirius Federal Territory, Russia
E. A. Romanyuk
Sirius University of Science and TechnologySirius Federal Territory, Russia
S. I. Milov
Sirius University of Science and TechnologySirius Federal Territory, Russia
A. A. Chesnokov
Sirius University of Science and TechnologySirius Federal Territory, Russia
D. S. Kalinina
Sirius University of Science and Technology; St Petersburg State University, Institute of Translational Biomedicine; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: kalinina.ds@talantiuspeh.ru
Sirius Federal Territory, Russia; St Petersburg, Russia; St Petersburg, Russia
P. E. Musienko
Pavlov Institute of Physiology, Russian Academy of Sciences; LIFT Center (Life Improvement by Future Technologies); Federal Center for Brain and Neurotechnologies
Email: pol-spb@mail.ru
St Petersburg, Russia; Moscow, Russia; Moscow, Russia
References
- Fehlings M, Singh A, Tetreault L, Kalsi-Ryan S, Nouri A (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6: 309–331. https://doi.org/10.2147/clep.s68889
- Nasser M, Bejjani F, Raad M, Abou-El-Hassan H, Mantash S, Nokkari A, Ramadan N, Kassem N, Mondello S, Hamade E, Darwish H, Zibara K, Kobeissy F (2016) Traumatic Brain Injury and Blood-Brain Barrier Cross-Talk. CNS Neurol Disord Drug Targets 15(9): 1030–1044. https://doi.org/10.2174/1871527315666160815093525
- Sterner RC, Sterner RM (2023) Immune response following traumatic spinal cord injury: Pathophysiology and therapies. Front Immunol 13: 1084101. https://doi.org/10.3389/fimmu.2022.1084101
- Patel A, Taksande A, Khandelwal R, Jain A (2024) A Narrative Review of Post-traumatic Neuroinflammation: Relevance to Pediatrics. Cureus 16(9): e69512. https://doi.org/10.7759/cureus.69512
- Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ (2022) The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 11: 2083. https://doi.org/10.3390/cells11132083
- Xia Q-P, Cheng Z-Y, He L (2019) The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 76: 105908. https://doi.org/10.1016/j.intimp.2019.105908
- Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms Underlying Inflammation in Neurodegeneration. Cell 140: 918–934. https://doi.org/10.1016/j.cell.2010.02.016
- Chen M-H, Sung Y-F, Chien W-C, Chung C-H, Chen J-W (2023) Risk of Migraine after Traumatic Brain Injury and Effects of Injury Management Levels and Treatment Modalities: A Nationwide Population-Based Cohort Study in Taiwan. J Clin Med 12: 1530. https://doi.org/10.3390/jcm12041530
- Hellenbrand DJ, Quinn CM, Piper ZJ, Morehouse CN, Fixel JA, Hanna AS (2021) Inflammation after spinal cord injury: А review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammat 18: 284. https://doi.org/10.1186/s12974-021-02337-2
- Gerin C, Becquet D, Privat A (1995) Direct evidence for the link between monoaminergic descending pathways and motor activity. I. A study with microdialysis probes implanted in the ventral funiculus of the spinal cord. Brain Res 704: 191–201. https://doi.org/10.1016/0006-8993(95)01111-0
- Saavedra JM (1989) β-Phenylethylamine, Phenylethanolamine, Tyramine and Octopamine. In: Trendelenburg U, Weiner N (eds) Catecholamines II. Handbook of Experimental Pharmacology. Springer. Berlin Heidelberg. 90: 181–210.
- Rutigliano G, Accorroni A, Zucchi R (2018) The Case for TAAR1 as a Modulator of Central Nervous System Function. Front Pharmacol 8: 987. https://doi.org/10.3389/fphar.2017.00987
- Gozal EA, O’Neill BE, Sawchuk MA, Zhu H, Halder M, Chou C-C, Hochman S (2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits 8: 134. https://doi.org/10.3389/fncir.2014.00134
- Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98: 8966–8971. https://doi.org/10.1073/pnas.151105198
- Liberles SD (2015) Trace amine-associated receptors: Ligands, neural circuits, and behaviors. Curr Opin Neurobiol 34: 1–7. https://doi.org/10.1016/j.conb.2015.01.001
- Efimova EV, Kozlova AA, Razenkova V, Katolikova NV, Antonova KA, Sotnikova TD, Merkulyeva NS, Veshchitskii AS, Kalinina DS, Korzhevskii DE, Musienko PE, Kanov EV, Gainetdinov RR (2021) Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice. Neuropharmacology 182: 108373. https://doi.org/10.1016/j.neuropharm.2020.108373
- Efimova EV, Kuvarzin SR, Mor MS, Katolikova NV, Shemiakova TS, Razenkova V, Ptukha M, Kozlova AA, Murtazina RZ, Smirnova D, Veshchitskii AA, Merkulyeva NS, Volnova AB, Musienko PE, Korzhevskii DE, Budygin EA, Gainetdinov RR (2022) Trace Amine-Associated Receptor 2 Is Expressed in the Limbic Brain Areas and Is Involved in Dopamine Regulation and Adult Neurogenesis. Front Behav Neurosci 16: 847410. https://doi.org/10.3389/fnbeh.2022.847410
- Kalinina DS, Ptukha MA, Goriainova AV, Merkulyeva NS, Kozlova AA, Murtazina RZ, Shemiakova TS, Kuvarzin SR, Vaganova AN, Volnova AB, Gainetdinov RR, Musienko PE (2021) Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 11: 23092. https://doi.org/10.1038/s41598-021-02289-w
- Li Y, Lucas-Osma AM, Black S, Bandet MV, Stephens MJ, Vavrek R, Sanelli L, Fenrich KK, Di Narzo AF, Dracheva S, Winship IR, Fouad K, Bennett DJ (2017) Pericytes impair capillary blood flow and motor function after chronic spinal cord injury. Nat Med 23: 733–741. https://doi.org/10.1038/nm.4331
- Moiseenko VI, Apryatina VA, Gainetdinov RR, Apryatin SA (2024) Trace Amine-Associated Receptors’ Role in Immune System Functions. Biomedicines 12: 893. https://doi.org/10.3390/biomedicines12040893
- Shum A, Zaichick S, McElroy GS, D’Alessandro K, Alasady MJ, Novakovic M, Peng W, Grebenik EA, Chung D, Flanagan ME, Smith R, Morales A, Stumpf L, McGrath K, Krainc D, Mendillo ML, Prakriya M, Chandel NS, Caraveo G (2023) Octopamine metabolically reprograms astrocytes to confer neuroprotection against α-synuclein. Proc Natl Acad Sci U S A 120(17): e2217396120. https://doi.org/10.1073/pnas.2217396120
- Shimazu S, Miklya I (2004) Pharmacological studies with endogenous enhancer substances: β-phenylethylamine, tryptamine, and their synthetic derivatives. Prog Neuropsychopharmacol Biol Psychiatry 28: 421–427. https://doi.org/10.1016/j.pnpbp.2003.11.016
- Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90: 257–271. https://doi.org/10.1111/j.1471-4159.2004.02501.x
- Berry MD, Juorio AV, Li X-M, Boulton AA (1996) Aromatic l-amino acid decarboxylase: A neglected and misunderstood enzyme. Neurochem Res 21: 1075–1087. https://doi.org/10.1007/bf02532418
- Durden DA, Davis BA (1993) Determination of regional distributions of phenylethylamine andmeta-andpara-tyramine in rat brain regions and presence in human and dog plasma by an ultra-sensitive negative chemical ion gas chromatography-mass spectrometric (NCI-GC-MS) method. Neurochem Res 18: 995–1002. https://doi.org/10.1007/bf00966759
- Gozal EA (2010) Trace Amines as Novel Modulators of Spinal Motor Function. Georgia Institute of Technology Ph. D thesis. Georgia: Institute of Georgia.
- Hochman S, Gozal EA (2016) Trace Amines as Intrinsic Monoaminergic Modulators of Spinal Cord Functional Systems. Trace Amines and Neurological Disorders. Elsevier. 139–150. https://doi.org/10.1016/B978-0-12-803603-7.00010-0
- Ren L-Q, Chen M, Hultborn H, Guo S, Zhang Y, Zhang M (2017) Heterogenic Distribution of Aromatic L-Amino Acid Decarboxylase Neurons in the Rat Spinal Cord. Front Integr Neurosci 11: 31. https://doi.org/10.3389/fnint.2017.00031
- Wienecke J, Ren L-Q, Hultborn H, Chen M, Møller M, Zhang Y, Zhang M (2014) Spinal Cord Injury Enables Aromatic l-Amino Acid Decarboxylase Cells to Synthesize Monoamines. J Neurosci 34: 11984–12000. https://doi.org/10.1523/jneurosci.3838-13.2014
- Jaeger CB, Teitelman G, Joh TH, Albert VR, Park DH, Reis DJ (1983) Some Neurons of the Rat Central Nervous System Contain Aromatic-L-Amino-Acid Decarboxylase But Not Monoamines. Science 219: 1233–1235. https://doi.org/10.1126/science.6131537
- D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A (2003) HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci Let 346: 89–92. https://doi.org/10.1016/s0304-3940(03)00573-1
- Gainetdinov RR, Hoener MC, Berry MD (2018) Trace Amines and Their Receptors. Pharmacol Rev 70: 549–620. https://doi.org/10.1124/pr.117.015305
- Муртазина РЗ, Гайнетдинов РР (2019) Трансгенные животные в экспериментальной фармакологии: фокус на рецепторах следовых аминов. Росс физиол журн им ИМ Сеченова 105: 1373–1380. [Murtazina RZ, Gainetdinov RR (2019) Transgenic Animal Models in Experimental Pharmacology: Focus on Trace Amine-Associated Receptors. Russ J Physiol 105: 1373–1380. (In Russ)]. https://doi.org/10.1134/S0869813919110098
- Hochman S (2015) Metabolic recruitment of spinal locomotion: Intracellular neuromodulation by trace amines and their receptors. Neural Regen Res 10: 1940. https://doi.org/10.4103/1673-5374.169625
- Ono H, Ito H, Fukuda H (1991) 2-Phenylethylamine and methamphetamine enhance the spinal monosynaptic reflex by releasing noradrenaline from the terminals of descending fibers. Jpn J Pharmacol 55: 359–366. https://doi.org/10.1254/jjp.55.359
- Jackson DM (1975) Beta-phenylethylamine and locomotor activity in mice. Interaction with catecholaminergic neurones and receptors. Arzneimittelforschung 25: 622–626.
- Paulos MA, Tessel RE (1982) Excretion of β-Phenethylamine Is Elevated in Humans After Profound Stress. Science 215: 1127–1129. https://doi.org/10.1126/science.7063846
- D’Andrea G, D’Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, Galloni E, De Riva V, Colavito D, Leon A, Rosteghin V, Perini F (2013) The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia 33: 932–937. https://doi.org/10.1177/0333102413480755
- D’Andrea G, Nordera G, Pizzolato G, Bolner A, Colavito D, Flaibani R, Leon A (2010) Trace amine metabolism in Parkinson’s disease: Low circulating levels of octopamine in early disease stages. Neurosci Let 469: 348–351. https://doi.org/10.1016/j.neulet.2009.12.025
- Xie Z, Miller GM (2008) β-Phenylethylamine Alters Monoamine Transporter Function via Trace Amine-Associated Receptor 1: Implication for Modulatory Roles of Trace Amines in Brain. J Pharmacol Exp Ther 325: 617–628. https://doi.org/10.1124/jpet.107.134247
- Ryu IS, Kim O-H, Kim JS, Sohn S, Choe ES, Lim R-N, Kim TW, Seo J-W, Jang EY (2021) Effects of β-Phenylethylamine on Psychomotor, Rewarding, and Reinforcing Behaviors and Affective State: The Role of Dopamine D1 Receptors. Int J Mol Sci 22: 9485. https://doi.org/10.3390/ijms22179485
- Foldes A, Costa E (1975) Relationship of brain monoamine and locomotor activity in rats. Biochem Pharmacol 24: 1617–1621. https://doi.org/10.1016/0006-2952(75)90089-1
- Dhillo WS, Bewick GA, White NE, Gardiner JV, Thompson EL, Bataveljic A, Murphy KG, Roy D, Patel NA, Scutt JN, Armstrong A, Ghatei MA, Bloom SR (2009) The thyroid hormone derivative 3-iodothyronamine increases food intake in rodents. Diabetes Obes Metab 11: 251–260. https://doi.org/10.1111/j.1463-1326.2008.00935.x
- James TD, Moffett SX, Scanlan TS, Martin JV (2013) Effects of acute microinjections of the thyroid hormone derivative 3-iodothyronamine to the preoptic region of adult male rats on sleep, thermoregulation and motor activity. Hormones and Behavior 64: 81–88. https://doi.org/10.1016/j.yhbeh.2013.05.004
- Manni ME, De Siena G, Saba A, Marchini M, Landucci E, Gerace E, Zazzeri M, Musilli C, Pellegrini-Giampietro D, Matucci R, Zucchi R, Raimondi L (2013) Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br J Pharmacol 168: 354–362. https://doi.org/10.1111/j.1476-5381.2012.02137.x
- Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7: 728–741. https://doi.org/10.1016/S1474-4422(08)70164-9
- Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468: 557–561. https://doi.org/10.1038/nature09522
- Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A (2021) Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NeuroSci 3: 1–27. https://doi.org/10.3390/neurosci3010001
- Montague-Cardoso K, Malcangio M (2021) Changes in blood–spinal cord barrier permeability and neuroimmune interactions in the underlying mechanisms of chronic pain. Pain Rep 6(1): e879. https://doi.org/10.1097/pr9.0000000000000879
- Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D (2018) Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 136: 507–523. https://doi.org/10.1007/s00401-018-1893-0
- Lan Y-L, Li S, Lou J-C, Ma X-C, Zhang B (2019) The potential roles of dopamine in traumatic brain injury: A preclinical and clinical update. Am J Transl Res 11: 2616–2631.
- Ransohoff RM, Schafer D, Vincent A, Blachère NE, Bar-Or A (2015) Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics 12: 896–909. https://doi.org/10.1007/s13311-015-0385-3
- Krakau K, Hansson A, Karlsson T, De Boussard CN, Tengvar C, Borg J (2007) Nutritional treatment of patients with severe traumatic brain injury during the first six months after injury. Nutrition 23: 308–317. https://doi.org/10.1016/j.nut.2007.01.010
- Zhu S, Chen M, Ying Y, Wu Q, Huang Z, Ni W, Wang X, Xu H, Bennett S, Xiao J, Xu J (2022) Versatile subtypes of pericytes and their roles in spinal cord injury repair, bone development and repair. Bone Res 10: 30. https://doi.org/10.1038/s41413-022-00203-2
- Li Y, Li L, Stephens MJ, Zenner D, Murray KC, Winship IR, Vavrek R, Baker GB, Fouad K, Bennett DJ (2014) Synthesis, transport, and metabolism of serotonin formed from exogenously applied 5-HTP after spinal cord injury in rats. J Neurophysiol 111: 145–163. https://doi.org/10.1152/jn.00508.2013
- Azam B, Wienecke J, Jensen DB, Azam A, Zhang M (2015) Spinal Cord Hemisection Facilitates Aromatic L-Amino Acid Decarboxylase Cells to Produce Serotonin in the Subchronic but Not the Chronic Phase. Neural Plasticity 2015: 1–10. https://doi.org/10.1155/2015/549671
- Almeida VM, Paiva AE, Sena IFG, Mintz A, Magno LAV, Birbrair A (2018) Pericytes Make Spinal Cord Breathless after Injury. Neuroscientist 24: 440–447. https://doi.org/10.1177/1073858417731522
- Wang D, Lu P (2017) More complication after chronic spinal cord injury: Impairment of blood flow, which could be potentially restored for functional improvement. J Xiangya Med 2: 72. https://doi.org/10.21037/jxym.2017.10.02
- Picoli CC, Coimbra-Campos LMC, Guerra DAP, Silva WN, Prazeres PHDM, Costa AC, Magno LAV, Romano-Silva MA, Mintz A, Birbrair A (2019) Pericytes Act as Key Players in Spinal Cord Injury. Am J Pathol 189: 1327–1337. https://doi.org/10.1016/j.ajpath.2019.03.008
- Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, Göritz C, Frisén J (2018) Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell 173: 153-165.e22. https://doi.org/10.1016/j.cell.2018.02.004
- Fernández-Klett F, Potas JR, Hilpert D, Blazej K, Radke J, Huck J, Engel O, Stenzel W, Genové G, Priller J (2013) Early Loss of Pericytes and Perivascular Stromal Cell-Induced Scar Formation after Stroke. J Cereb Blood Flow Metab 33: 428–439. https://doi.org/10.1038/jcbfm.2012.187
- McAdoo DJ, Xu G-Y, Robak G, Hughes MG (1999) Changes in Amino Acid Concentrations over Time and Space around an Impact Injury and Their Diffusion Through the Rat Spinal Cord. Exp Neurol 159: 538–544. https://doi.org/10.1006/exnr.1999.7166
- Henley CM, Muszynski C, Cherian L, Robertson CS (1996) Activation of Ornithine Decarboxylase and Accumulation of Putrescine after Traumatic Brain Injury. J Neurotrauma 13: 487–496. https://doi.org/10.1089/neu.1996.13.487
- Shohami E, Nates JL, Glantz L, Trembovler V, Shapira Y, Bachrach U (1992) Changes in brain polyamine levels following head injury. Exp Neurol 117: 189–195. https://doi.org/10.1016/0014-4886(92)90126-B
- Christian SL, Berry MD (2018) Trace Amine-Associated Receptors as Novel Therapeutic Targets for Immunomodulatory Disorders. Front Pharmacol 9: 680. https://doi.org/10.3389/fphar.2018.00680
- Babusyte A, Kotthoff M, Fiedler J, Krautwurst D (2013) Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. J Leukoc Biol 93: 387–394. https://doi.org/10.1189/jlb.0912433
- Polini B, Ricardi C, Bertolini A, Carnicelli V, Rutigliano G, Saponaro F, Zucchi R, Chiellini G (2023) T1AM/TAAR1 System Reduces Inflammatory Response and β-Amyloid Toxicity in Human Microglial HMC3 Cell Line. Int J Mol Sci 24: 11569. https://doi.org/10.3390/ijms241411569
- Laurino A, Gencarelli M, Raimondi L (2021) The 3-iodothyronamine (T1AM) and the 3-iodothyroacetic acid (TA1) indicate a novel connection with the histamine system for neuroprotection. Eur J Pharmacol 912: 174606. https://doi.org/10.1016/j.ejphar.2021.174606
- Musilli C, De Siena G, Manni ME, Logli A, Landucci E, Zucchi R, Saba A, Donzelli R, Passani MB, Provensi G, Raimondi L (2014) Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br J Pharmacol 171: 3476–3484. https://doi.org/10.1111/bph.12697
- Cöster M, Biebermann H, Schöneberg T, Stäubert C (2015) Evolutionary Conservation of 3-iodothyronamine as an Agonist at the Trace Amine-Associated Receptor 1. Eur Thyroid J 4: 9–20. https://doi.org/10.1159/000430839
- Lee J-S, Jang B-S, Chung C-M, Choi I, Kim J-G, Park SH (2013) In vivo molecular imaging of [125I]-labeled 3-iodothyronamine: A hibernation-inducing agent. Appl Radiat Isotop 73: 74–78. https://doi.org/10.1016/j.apradiso.2012.11.017
- Rouble AN, Hefler J, Mamady H, Storey KB, Tessier SN (2013) Anti-apoptotic signaling as a cytoprotective mechanism in mammalian hibernation. Peer J 1: e29. https://doi.org/10.7717/peerj.29
- Lv J, Liao J, Tan W, Yang L, Shi X, Zhang H, Chen L, Wang S, Li Q (2018) 3-Iodothyronamine Acting through an Anti-Apoptotic Mechanism Is Neuroprotective Against Spinal Cord Injury in Rats. Ann Clin Lab Sci 48: 736–742.
- Mojsa B, Mora S, Bossowski JP, Lassot I, Desagher S (2015) Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Cell Death Differ 22: 274–286. https://doi.org/10.1038/cdd.2014.141
- Bellusci L, Laurino A, Sabatini M, Sestito S, Lenzi P, Raimondi L, Rapposelli S, Biagioni F, Fornai F, Salvetti A, Rossi L, Zucchi R, Chiellini G (2017) New Insights into the Potential Roles of 3-iodothyronamine (T1AM) and Newly Developed Thyronamine-Like TAAR1 Agonists in Neuroprotection. Front Pharmacol 8: 905. https://doi.org/10.3389/fphar.2017.00905
- Cisneros IE, Ghorpade A (2014) Methamphetamine and HIV-1-induced neurotoxicity: Role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology 85: 499–507. https://doi.org/10.1016/j.neuropharm.2014.06.011
- Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-Neuron Lactate Transport Is Required for Long-Term Memory Formation. Cell 144: 810–823. https://doi.org/10.1016/j.cell.2011.02.018
- Neis VB, Rosa PB, Olescowicz G, Rodrigues ALS (2017) Therapeutic potential of agmatine for CNS disorders. Neurochem Int 108: 318–331. https://doi.org/10.1016/j.neuint.2017.05.006
- Gawali NB, Bulani VD, Gursahani MS, Deshpande PS, Kothavade PS, Juvekar AR (2017) Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Res 1663: 66–77. https://doi.org/10.1016/j.brainres.2017.03.004
- Kuo J-R, Lo C-J, Chang C-P, Lin K-C, Lin M-T, Chio C-C (2011) Agmatine-Promoted Angiogenesis, Neurogenesis, and Inhibition of Gliosis-Reduced Traumatic Brain Injury in Rats. J Trauma 71: E87–E93. https://doi.org/10.1097/TA.0b013e31820932e2
- Park YM, Lee WT, Bokara KK, Seo SK, Park SH, Kim JH, Yenari MA, Park KA, Lee JE (2013) The Multifaceted Effects of Agmatine on Functional Recovery after Spinal Cord Injury through Modulations of BMP-2/4/7 Expressions in Neurons and Glial Cells. PLoS One 8: e53911. https://doi.org/10.1371/journal.pone.0053911
- Dyuizen IV, Balashova TV, Lamash NE, Mnatsakanyan LA, Shoumatov VB (2013) Neurotransmitter role of agmatine, its interaction with classic neuromediators and contribution to mechanism of pain development. Pac Med J (4): 22–27.
- Barua S, Kim JY, Lee JE (2019) Role of Agmatine on Neuroglia in Central Nervous System Injury. Brain Neurorehabil 12: e2. https://doi.org/10.12786/bn.2019.12.e2
- Firat T, Kukner A, Ayturk N, Gezici AR, Serin E, Ozogul C, Tore F (2021) The Potential Therapeutic Effects of Agmatine, Methylprednisolone, and Rapamycin on Experimental Spinal Cord Injury. Cell J 23(6): 701–707. https://doi.org/10.22074/cellj.2021.7198
- Kim JH, Kim JY, Mun CH, Suh M, Lee JE (2017) Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats. Exp Neurobiol 26: 278–286. https://doi.org/10.5607/en.2017.26.5.278
- Goracke-Postle CJ, Nguyen HOX, Stone LS, Fairbanks CA (2006) Release of tritiated agmatine from spinal synaptosomes. Neuroreport 17: 13–17. https://doi.org/10.1097/01.wnr.0000192739.38653.aa
- Fairbanks CA, Schreiber KL, Brewer KL, Yu C-G, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci U S A 97: 10584–10589. https://doi.org/10.1073/pnas.97.19.10584
- Kotil K, Kuscuoglu U, Kirali M, Uzun H, Akçetin M, Bilge T (2006) Investigation of the dose-dependent neuroprotective effects of agmatine in experimental spinal cord injury: A prospective randomized and placebo–control trial. J Neurosurg Spine 4: 392–399. https://doi.org/10.3171/spi.2006.4.5.392
- Gilad GM, Gilad VH (2000) Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats. Neurosci Let 296: 97–100. https://doi.org/10.1016/S0304-3940(00)01625-6
- Kim JY, Lee YW, Kim JH, Lee WT, Park KA, Lee JE (2015) Agmatine Attenuates Brain Edema and Apoptotic Cell Death after Traumatic Brain Injury. J Korean Med Sci 30: 943. https://doi.org/10.3346/jkms.2015.30.7.943
- Sengul G, Takci E, Malcok UA, Akar A, Erdogan F, Kadioglu HH, Aydin IH (2008) A preliminary histopathological study of the effect of agmatine on diffuse brain injury in rats. J Clin Neurosci 15: 1125–1129. https://doi.org/10.1016/j.jocn.2007.11.005
- Reis DJ, Regunathan S (2000) Is agmatine a novel neurotransmitter in brain? Trends Pharmacol Sci. 21: 187–193. https://doi.org/10.1016/S0165-6147(00)01460-7
- Kotagale NR, Taksande BG, Inamdar NN (2019) Neuroprotective offerings by agmatine. Neurotoxicology 73: 228–245. https://doi.org/10.1016/j.neuro.2019.05.001
- Glyakina AV, Pavlov CD, Sopova JV, Gainetdinov RR, Leonova EI, Galzitskaya OV (2021) Search for Structural Basis of Interactions of Biogenic Amines with Human TAAR1 and TAAR6 Receptors. Int J Mol Sci 23: 209. https://doi.org/10.3390/ijms23010209
- Rieck J, Skatchkov SN, Derst C, Eaton MJ, Veh RW (2022) Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 12: 501. https://doi.org/10.3390/biom12040501
- Iorgulescu JB, Patel SP, Louro J, Andrade CM, Sanchez AR, Pearse DD (2015) Acute Putrescine Supplementation with Schwann Cell Implantation Improves Sensory and Serotonergic Axon Growth and Functional Recovery in Spinal Cord Injured Rats. Neural Plasticity 2015: 1–11. https://doi.org/10.1155/2015/186385
- Herzog C, Greenald D, Larraz J, Keatinge M, Herrgen L (2020) RNA-seq analysis and compound screening highlight multiple signalling pathways regulating secondary cell death after acute CNS injury in vivo. Biol Open 9: bio050260. https://doi.org/10.1242/bio.050260
- Mautes AEM, Paschen W, Röhn G, Nacimiento AC (1999) Changes in ornithine decarboxylase activity and putrescine concentrations after spinal cord compression injury in the rat. Neurosci Let 264: 153–156. https://doi.org/10.1016/S0304-3940(99)00197-4
- Zahedi K, Huttinger F, Morrison R, Murray-Stewart T, Casero RA, Strauss KI (2010) Polyamine Catabolism Is Enhanced after Traumatic Brain Injury. J Neurotrauma 27: 515–525. https://doi.org/10.1089/neu.2009.1097
- Shih JC (2018) Monoamine oxidase isoenzymes: Genes, functions and targets for behavior and cancer therapy. J Neural Transm 125: 1553–1566. https://doi.org/10.1007/s00702-018-1927-8
- Chen K, Palagashvili T, Hsu W, Chen Y, Tabakoff B, Hong F, Shih AT, Shih JC (2022) Brain injury and inflammation genes common to a number of neurological diseases and the genes involved in the genesis of GABAnergic neurons are altered in monoamine oxidase B knockout mice. Brain Res 1774: 147724. https://doi.org/10.1016/j.brainres.2021.147724
- Sotnikova TD, Budygin EA, Jones SR, Dykstra LA, Caron MG, Gainetdinov RR (2004) Dopamine transporter-dependent and -independent actions of trace amine β-phenylethylamine. J Neurochem 91: 362–373. https://doi.org/10.1111/j.1471-4159.2004.02721.x
- Bunzow JR, Sonders MS, Arttamangkul S, Harrison LM, Zhang G, Quigley DI, Darland T, Suchland KL, Pasumamula S, Kennedy JL, Olson SB, Magenis RE, Amara SG, Grandy DK (2001) Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol Pharmacol 60: 1181–1188. https://doi.org/10.1124/mol.60.6.1181
- Doyle KP, Suchland KL, Ciesielski TMP, Lessov NS, Grandy DK, Scanlan TS, Stenzel-Poore MP (2007) Novel Thyroxine Derivatives, Thyronamine and 3-iodothyronamine, Induce Transient Hypothermia and Marked Neuroprotection Against Stroke Injury. Stroke 38: 2569–2576. https://doi.org/10.1161/STROKEAHA.106.480277
- Motohashi N, Nakagawara M, Semba J, Ishii K, Watanabe A, Kariya T (1983) [Effect of beta-phenylethylamine on locomotor activity and brain catecholamine metabolism in mice]. Yakubutsu Seishin Kodo 3: 67–75.
- Espinoza S, Salahpour A, Masri B, Sotnikova TD, Messa M, Barak LS, Caron MG, Gainetdinov RR (2011) Functional Interaction between Trace Amine-Associated Receptor 1 and Dopamine D2 Receptor. Mol Pharmacol 80: 416–425. https://doi.org/10.1124/mol.111.073304
- Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: Role of D2 dopamine autoreceptors. Neuropharmacology 81: 283–291. https://doi.org/10.1016/j.neuropharm.2014.02.007
- Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015) Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur J Pharmacol 25: 2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011
- Racaud-Sultan C, Vergnolle N (2021) GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells 10: 225. https://doi.org/10.3390/cells10020225
- Jiang W, He F, Ding G, Wu J (2023) Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Let 792: 136935. https://doi.org/10.1016/j.neulet.2022.136935
- Hou S, Carson DM, Wu D, Klaw MC, Houlé JD, Tom VJ (2016) Dopamine is produced in the rat spinal cord and regulates micturition reflex after spinal cord injury. Exp Neurol 285: 136–146. https://doi.org/10.1016/j.expneurol.2015.12.001
- Verduzco-Mendoza A, Carrillo-Mora P, Avila-Luna A, Gálvez-Rosas A, Olmos-Hernández A, Mota-Rojas D, Bueno-Nava A (2021) Role of the Dopaminergic System in the Striatum and Its Association with Functional Recovery or Rehabilitation After Brain Injury. Front Neurosci 15: 693404. https://doi.org/10.3389/fnins.2021.693404
- Reimer MM, Norris A, Ohnmacht J, Patani R, Zhong Z, Dias TB, Kuscha V, Scott AL, Chen Y-C, Rozov S, Frazer SL, Wyatt C, Higashijima S, Patton EE, Panula P, Chandran S, Becker T, Becker CG (2013) Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration. Developmental Cell 25: 478–491. https://doi.org/10.1016/j.devcel.2013.04.012
- Sotnikova TD, Zorina OI, Ghisi V, Caron MG, Gainetdinov RR (2008) Trace amine associated receptor 1 and movement control. Parkinson Relat Disord 14: S99–S102. https://doi.org/10.1016/j.parkreldis.2008.04.006
- Sotnikova TD, Caron MG, Gainetdinov RR (2009) Trace Amine-Associated Receptors as Emerging Therapeutic Targets: TABLE 1. Mol Pharmacol 76: 229–235. https://doi.org/10.1124/mol.109.055970
- Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85: 372–385. https://doi.org/10.1016/j.ygeno.2004.11.010
- Perrin FE, Noristani HN (2019) Serotonergic mechanisms in spinal cord injury. Exp Neurol 318: 174–191. https://doi.org/10.1016/j.expneurol.2019.05.007
- Ghosh M, Pearse DD (2015) The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 8: 151. https://doi.org/10.3389/fncir.2014.00151
- Bilchak JN, Caron G, Côté M-P (2021) Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 22: 4858. https://doi.org/10.3390/ijms22094858
- Zhou S-Y, Goshgarian HG (2000) 5-Hydroxytryptophan-induced respiratory recovery after cervical spinal cord hemisection in rats. J Appl Physiol 89: 1528–1536. https://doi.org/10.1152/jappl.2000.89.4.1528
- Zhang Z, Rasmussen L, Saraswati M, Koehler RC, Robertson C, Kannan S (2019) Traumatic Injury Leads to Inflammation and Altered Tryptophan Metabolism in the Juvenile Rabbit Brain. J Neurotrauma 36: 74–86. https://doi.org/10.1089/neu.2017.5450
- Meisel R, Zibert A, Laryea M, Göbel U, Däubener W, Dilloo D (2004) Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase–mediated tryptophan degradation. Blood 103: 4619–4621. https://doi.org/10.1182/blood-2003-11-3909
- Busto R, Dietrich WD, Globus MY-T, Alonso O, Ginsberg MD (1997) Extracellular Release of Serotonin following Fluid-Percussion Brain Injury in Rats. J Neurotrauma 14: 35–42. https://doi.org/10.1089/neu.1997.14.35
- Shi M, Mi L, Li F, Li Y, Zhou Y, Chen F, Liu L, Chai Y, Yang W, Zhang J, Chen X (2022) Fluvoxamine Confers Neuroprotection via Inhibiting Infiltration of Peripheral Leukocytes and M1 Polarization of Microglia/Macrophages in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 39: 1240–1261. https://doi.org/10.1089/neu.2021.0355
- Bertels H, Vicente-Ortiz G, El Kanbi K, Takeoka A (2022) Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury. Nat Neurosci 25: 617–629. https://doi.org/10.1038/s41593-022-01067-9
- Sobrido-Camean D, Rodicio M, Barreiro-Iglesias A (2018) Serotonin controls axon and neuronal regeneration in the nervous system: Lessons from regenerating animal models. Neural Regen Res 13: 237. https://doi.org/10.4103/1673-5374.226387
- Revel FG, Moreau J-L, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci U S A 108: 8485–8490. https://doi.org/10.1073/pnas.1103029108
- Laurino A, De Siena G, Saba A, Chiellini G, Landucci E, Zucchi R, Raimondi L (2015) In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. Eur J Pharmacol 761: 130–134. https://doi.org/10.1016/j.ejphar.2015.04.038
- Zilberg G, Parpounas AK, Warren AL, Yang S, Wacker D (2024) Molecular basis of human trace amine-associated receptor 1 activation. Nat Commun 15: 108. https://doi.org/10.1038/s41467-023-44601-4
- Sharma HS, Patnaik R, Muresanu DF, Lafuente JV, Ozkizilcik A, Tian ZR, Nozari A, Sharma A (2017) Histaminergic Receptors Modulate Spinal Cord Injury-Induced Neuronal Nitric Oxide Synthase Upregulation and Cord Pathology: New Roles of Nanowired Drug Delivery for Neuroprotection. Int Rev Neurobiol 137: 65–98. https://doi.org/10.1016/bs.irn.2017.09.001
- Sharma HS, Vannemreddy P, Patnaik R, Patnaik S, Mohanty S (2006) Histamine receptors influence blood-spinal cord barrier permeability, edema formation, and spinal cord blood flow following trauma to the rat spinal cord. Acta Neurochir Suppl 96: 316–321. https://doi.org/10.1007/3-211-30714-1_67
- Huang S-B, Zhao H-D, Wang L-F, Sun M-F, Zhu Y-L, Wu Y-B, Xu Y-D, Peng S-X, Cui C, Shen Y-Q (2017) Intradiencephalon injection of histamine inhibited the recovery of locomotor function of spinal cord injured zebrafish. Biochem Biophys Res Commun 489: 275–280. https://doi.org/10.1016/j.bbrc.2017.05.158
- Lozada A, Maegele M, Stark H, Neugebauer EMA, Panula P (2005) Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobio 31: 150–162. https://doi.org/10.1111/j.1365-2990.2004.00622.x
- Zhou Z, An Q, Zhang W, Li Y, Zhang Q, Yan H (2024) Histamine and receptors in neuroinflammation: Their roles on neurodegenerative diseases. Behav Brain Res 465: 114964. https://doi.org/10.1016/j.bbr.2024.114964
- Xu J, Zhang X, Qian Q, Wang Y, Dong H, Li N, Qian Y, Jin W (2018) Histamine upregulates the expression of histamine receptors and increases the neuroprotective effect of astrocytes. J Neuroinflammat 15: 41. https://doi.org/10.1186/s12974-018-1068-x
- Carthy E, Ellender T (2021) Histamine, Neuroinflammation and Neurodevelopment: A Review. Front Neurosci 15: 680214. https://doi.org/10.3389/fnins.2021.680214
Supplementary files
