The Role of Dopamine in Chronic Pain: Neuroinflammation and Neurogenesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Chronic pain is a complex condition that directly affects the quality of life of patients. Regulation and treatment of chronic pain are associated with a number of difficulties, primarily due to the multifactorial nature of this condition. The causes of chronic pain can be associated not only with physical damage, such as various injuries, diseases and the development of neuroinflammation, but also with a violation of the synthesis of neurotransmitters, as well as complex processes of neurogenesis. In this review, we describe the complex and multifaceted interaction between dopaminergic regulation, neurogenesis and neuroinflammation on the development of chronic pain. Further studies of these relationships can lead to the creation of targeted therapeutic strategies aimed at eliminating chronic pain. Moreover, understanding the mechanisms underlying analgesia associated with the dopamine reward system can form the basis for the development of new therapeutic approaches to relieve and control pain.

About the authors

A. Vetlugina

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

N. O. Fokeeva

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

A. A. Kochneva

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

A. V. Kalueff

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Institute of Translational Biomedicine, Saint Petersburg State University

Federal Territory of Sirius, Russia; St. Petersburg, Russia

P. E. Musienko

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Life Improvement by Future Technologies Center “LIFT”; Federal Center of Brain Research and Neurotechnologies

Federal Territory of Sirius, Russia; Moscow, Russia; Moscow, Russia

E. V. Gerasimova

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Email: gerasimova.el.2011@yandex.ru
Federal Territory of Sirius, Russia

References

  1. Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Primer 3: 1–19. https://doi.org/10.1038/nrdp.2017.2
  2. Torrance N, Smith BH, Bennett MI, Lee AJ (2006) The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain 7: 281–289. https://doi.org/10.1016/j.jpain.2005.11.008
  3. Tesfaye S, Boulton AJM, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P (2010) Diabetic Neuropathies: Update on Definitions, Diagnostic Criteria, Estimation of Severity, and Treatments. Diabetes Care 33: 2285–2293. https://doi.org/10.2337/dc10-1303
  4. Johnson RW, Rice ASC (2014) Postherpetic Neuralgia. N Engl J Med 371: 1526–1533. https://doi.org/10.1056/NEJMcp1403062
  5. Siddall PJ, Loeser JD (2001) Pain following spinal cord injury. Spinal Cord 39: 63–73. https://doi.org/10.1038/sj.sc.3101116
  6. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, Nurmikko T (2010) EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 17: 113. https://doi.org/10.1111/j.1468-1331.2010.02999.x
  7. Baron R, Binder A, Wasner G (2010) Neuropathic pain: Diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9: 807–819. https://doi.org/10.1016/S1474-4422(10)70143-5
  8. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D (2006) Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur J Pain 10: 287–287. https://doi.org/10.1016/j.ejpain.2005.06.009
  9. Akerman S, Goadsby P (2007) Dopamine and Migraine: Biology and Clinical Implications. Cephalalgia 27: 1308–1314. https://doi.org/10.1111/j.1468-2982.2007.01478.x
  10. Ramachandran R (2018) Neurogenic inflammation and its role in migraine. Semin Immunopathol 40: 301–314. https://doi.org/10.1007/s00281-018-0676-y
  11. Cheyuo C, Aziz M, Wang P (2019) Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8. Front Neurosci 13: 569. https://doi.org/10.3389/fnins.2019.00569
  12. Dreyer JK (2014) Three Mechanisms by which Striatal Denervation Causes Breakdown of Dopamine Signaling. J Neurosci 34: 12444–12456. https://doi.org/10.1523/JNEUROSCI.1458-14.2014
  13. Chakrabarti S, Bisaglia M (2023) Oxidative Stress and Neuroinflammation in Parkinson’s Disease: The Role of Dopamine Oxidation Products. Antioxidants 12: 955. https://doi.org/10.3390/antiox12040955
  14. Hastings TG (2009) The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease. J Bioenerg Biomembr 41: 469–472. https://doi.org/10.1007/s10863-009-9257-z
  15. Wu Z, Ren Z, Gao R, Sun K, Sun F, Liu T, Zheng S, Wang W, Zhang G (2024) Impact of subthalamic nucleus deep brain stimulation at different frequencies on neurogenesis in a rat model of Parkinson’s disease. Heliyon 10. https://doi.org/10.1016/j.heliyon.2024.e30730
  16. Bao Y-N, Dai W-L, Fan J-F, Ma B, Li S-S, Zhao W-L, Yu B-Y, Liu J-H (2021) The dopamine D1–D2DR complex in the rat spinal cord promotes neuropathic pain by increasing neuronal excitability after chronic constriction injury. Exp Mol Med 53: 235–249. https://doi.org/10.1038/s12276-021-00563-5
  17. Lai A, Iliff D, Zaheer K, Wang D, Gansau J, Laudier DM, Zachariou V, Iatridis JC (2023) Spinal Cord Sensitization and Spinal Inflammation from an In Vivo Rat Endplate Injury Associated with Painful Intervertebral Disc Degeneration. Int J Mol Sci 24: 3425. https://doi.org/10.3390/ijms24043425
  18. Rusanescu G (2016) Adult spinal cord neurogenesis: A regulator of nociception. Neurogenesis 3: e1256853. https://doi.org/10.1080/23262133.2016.1256853
  19. Almeida JGD, Kurita GP, Braga PE, Pimenta CADM (2010) Dor crônica em pacientes esquizofrênicos: prevalência e características. Cad Saúde Pública 26: 591–602. https://doi.org/10.1590/S0102-311X2010000300016
  20. Zhang Q (2024) Stress, Dopamine and the Development of Schizophrenia. Lect Notes Educ Psychol Public Media 33: 215–220. https://doi.org/10.54254/2753-7048/33/20231749
  21. Lurie DI (2018) An Integrative Approach to Neuroinflammation in Psychiatric disorders and Neuropathic Pain. J Exp Neurosci 12: 1179069518793639. https://doi.org/10.1177/1179069518793639
  22. Salter MW, Pitcher GM (2012) Dysregulated Src upregulation of NMDA receptor activity: A common link in chronic pain and schizophrenia. FEBS J 279: 2–11. https://doi.org/10.1111/j.1742-4658.2011.08390.x
  23. Bhatia A, Lenchner JR, Saadabadi A (2024) Biochemistry, Dopamine Receptors. In: StatPearls. StatPearls Publ. Treasure Island (FL).
  24. Navratilova E, Porreca F (2014) Reward and motivation in pain and pain relief. Nat Neurosci 17: 1304–1312. https://doi.org/10.1038/nn.3811
  25. Lee M, Manders TR, Eberle SE, Su C, D’amour J, Yang R, Lin HY, Deisseroth K, Froemke RC, Wang J (2015) Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci Off J Soc Neurosci 35: 5247–5259. https://doi.org/10.1523/JNEUROSCI.3494-14.2015
  26. Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128: 88–100. https://doi.org/10.1016/j.pain.2006.09.014
  27. Desch S, Schweinhardt P, Seymour B, Flor H, Becker S (2023) Evidence for dopaminergic involvement in endogenous modulation of pain relief. Elife 1: 12e81436. https://elifesciences.org/articles/81436. Accessed 27 Sep 2024
  28. Romero TRL, Resende LC, Guzzo LS, Duarte IDG (2013) CB1 and CB2 Cannabinoid Receptor Agonists Induce Peripheral Antinociception by Activation of the Endogenous Noradrenergic System. Anesth Analg 116: 463. https://doi.org/10.1213/ANE.0b013e3182707859
  29. DosSantos MF, Holanda-Afonso RC, Lima RL, DaSilva AF, Moura-Neto V (2014) The role of the blood–brain barrier in the development and treatment of migraine and other pain disorders. Front Cell Neurosci 8. https://doi.org/10.3389/fncel.2014.00302
  30. Ji R-R, Nackley A, Huh Y, Terrando N, Maixner W (2018) Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 129: 343–366. https://doi.org/10.1097/ALN.0000000000002130
  31. Matsuda M, Huh Y, Ji R-R (2019) Roles of Inflammation, Neurogenic inflammation, and Neuroinflammation in Pain. J Anesth 33: 131–139. https://doi.org/10.1007/s00540-018-2579-4
  32. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413: 203–210. https://doi.org/10.1038/35093019
  33. Nikolenko VN, Shelomentseva EM, Tsvetkova MM, Abdeeva EI, Giller DB, Babayeva JV, Achkasov EE, Gavryushova LV, Sinelnikov MY (2022) Nociceptors: Their Role in Body’s Defenses, Tissue Specific Variations and Anatomical Update. J Pain Res 15: 867–877. https://doi.org/10.2147/JPR.S348324
  34. Puopolo M (2019) The hypothalamic-spinal dopaminergic system: A target for pain modulation. Neural Regen Res 14: 925. https://doi.org/10.4103/1673-5374.250567
  35. Bravo L, Llorca-Torralba M, Berrocoso E, Micó JA (2019) Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci 13: 1268. https://doi.org/10.3389/fnins.2019.01268
  36. Cohen SP, Vase L, Hooten WM (2021) Chronic pain: An update on burden, best practices, and new advances. The Lancet 397: 2082–2097. https://doi.org/10.1016/S0140-6736(21)00393-7
  37. Kaplan CM, Kelleher E, Irani A, Schrepf A, Clauw DJ, Harte SE (2024) Deciphering nociplastic pain: Clinical features, risk factors and potential mechanisms. Nat Rev Neurol 20: 347–363. https://doi.org/10.1038/s41582-024-00966-8
  38. Loeser JD, Treede R-D (2008) The Kyoto protocol of IASP Basic Pain Terminology. Pain 137: 473–477. https://doi.org/10.1016/j.pain.2008.04.025
  39. Bennett DLH (2001) Neurotrophic Factors: Important Regulators of Nociceptive Function. The Neuroscientist 7: 13–17. https://doi.org/10.1177/107385840100700105
  40. Sneddon LU (2018) Comparative Physiology of Nociception and Pain. Physiol Bethesda Md 33: 63–73. https://doi.org/10.1152/physiol.00022.2017
  41. Willis WD, Westlund KN (1997) Neuroanatomy of the Pain System and of the Pathways That Modulate Pain. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 14: 2–31. https://doi.org/10.1097/00004691-199701000-00002
  42. Wei S-Q, Tao Z-Y, Xue Y, Cao D-Y (2020) Peripheral Sensitization. In: Turker H, Garcia Benavides L, Ramos Gallardo G, Méndez Del Villar M (eds) Peripheral Nerve Disorders and Treatment. IntechOpen.
  43. Yeh T-Y, Luo I-W, Hsieh Y-L, Tseng T-J, Chiang H, Hsieh S-T (2020) Peripheral Neuropathic Pain: From Experimental Models to Potential Therapeutic Targets in Dorsal Root Ganglion Neurons. Cells 9: 2725. https://doi.org/10.3390/cells9122725
  44. Hiraga S, Itokazu T, Nishibe M, Yamashita T (2022) Neuroplasticity related to chronic pain and its modulation by microglia. Inflamm Regen 42: 15. https://doi.org/10.1186/s41232-022-00199-6
  45. Garcia-Garrote M, Parga JA, Labandeira PJ, Labandeira-Garcia JL, Rodriguez-Pallares J (2021) Dopamine Regulates Adult Neurogenesis in the Ventricular-Subventricular Zone via Dopamine D3 Angiotensin Type 2 Receptor Interactions. Stem Cells 39: 1778–1794. https://doi.org/10.1002/stem.3457
  46. Aravagiri K, Ali A, Wang HC, Candido KD, Knezevic NN (2022) Identifying molecular mechanisms of acute to chronic pain transition and potential drug targets. Expert Opin Ther Targets 26: 801–810. https://doi.org/10.1080/14728222.2022.2137404
  47. van den Hoogen NJ, Patijn J, Tibboel D, Joosten EA (2020) Repetitive noxious stimuli during early development affect acute and long-term mechanical sensitivity in rats. Pediatr Res 87: 26–31. https://doi.org/10.1038/s41390-019-0420-x
  48. Ott T, Nieder A (2019) Dopamine and Cognitive Control in Prefrontal Cortex. Trends Cogn Sci 23: 213–234. https://doi.org/10.1016/j.tics.2018.12.006
  49. Queiroz BFG, Fonseca FCS, Ferreira RCM, Romero TRL, Perez AC, Duarte IDG (2022) Analgesia and pain: Dual effect of dopamine on the peripheral nociceptive system is dependent on D2-or D1–like receptor activation. Eur J Pharmacol 922: 174872. https://doi.org/10.1016/j.ejphar.2022.174872
  50. Li C, Liu S, Lu X, Tao F (2019) Role of Descending Dopaminergic Pathways in Pain Modulation. Curr Neuropharmacol 17: 1176–1182. https://doi.org/10.2174/1570159X17666190430102531
  51. Almanza A, Simón-Arceo K, Coffeen U, Fuentes-García R, Contreras B, Pellicer F, Mercado F (2015) A D2-like receptor family agonist produces analgesia in mechanonociception but not in thermonociception at the spinal cord level in rats. Pharmacol Biochem Behav 137: 119–125. https://doi.org/10.1016/j.pbb.2015.08.013
  52. Liu S, Tang Y, Shu H, Tatum D, Bai Q, Crawford J, Xing Y, Lobo MK, Bellinger L, Kramer P, Tao F (2019) Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway–produced analgesic effect in a trigeminal neuropathic pain mouse model. Pain 160: 334–344. https://doi.org/10.1097/j.pain.0000000000001414
  53. Jarcho JM, Mayer EA, Jiang ZK, Feier NA, London ED (2012) Pain, affective symptoms, and cognitive deficits in patients with cerebral dopamine dysfunction. Pain 153: 744–754. https://doi.org/10.1016/j.pain.2012.01.002
  54. Finan PH, Smith MT (2013) The comorbidity of insomnia, chronic pain, and depression: Dopamine as a putative mechanism. Sleep Med Rev 17: 173–183. https://doi.org/10.1016/j.smrv.2012.03.003
  55. Garcia Guerra S, Spadoni A, Mitchell J, Strigo IA (2023) Pain-related opioidergic and dopaminergic neurotransmission: Dual meta-Analyses of PET radioligand studies. Brain Res 1805: 148268. https://doi.org/10.1016/j.brainres.2023.148268
  56. Pan WHT, Yang S, Lin S (2004) Neurochemical interaction between dopaminergic and noradrenergic neurons in the medial prefrontal cortex. Synapse 53: 44–52. https://doi.org/10.1002/syn.20034
  57. Loomis CW, Jhamandas K, Milne B, Cervenko F (1987) Monoamine and opioid interactions in spinal analgesia and tolerance. Pharmacol Biochem Behav 26: 445–451. https://doi.org/10.1016/0091-3057(87)90146-8
  58. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8: 781–797. https://doi.org/10.1586/14737175.8.5.781
  59. Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward–valuation circuitry. Proc Natl Acad Sci U S A109: 20709–20713. https://doi.org/10.1073/pnas.1214605109
  60. Navratilova E, Morimura K, Xie JY, Atcherley CW, Ossipov MH, Porreca F (2016) Positive emotions and brain reward circuits in chronic pain. J Comp Neurol 524: 1646–1652. https://doi.org/10.1002/cne.23968
  61. Akyol O, Zoroglu SS, Armutcu F, Sahin S, Gurel A (2004) Nitric Oxide as a Physiopathological Factor in Neuropsychiatric Disorders. In Vivo 18(3): 377–390.
  62. Sokolov AY, Popova NS, Povarenkov AS, Amelin AV (2018) The role of dopamine in the mechanisms of primary headache formation. Neurochemistry 35: 323–337. https://doi.org/10.1134/S1027813318030147
  63. Gladstone J (2007) Dopamine and Migraine: Trigeminovascular Nociception, Genetics and Therapeutics. Cephalalgia 27: 1315–1320. https://doi.org/10.1111/j.1468-2982.2007.01479.x
  64. Marmura MJ (2012) Use of Dopamine Antagonists in Treatment of Migraine. Curr Treat Options Neurol 14: 27–35. https://doi.org/10.1007/s11940-011-0150-9
  65. Zhang W, Lei M, Wen Q, Zhang D, Qin G, Zhou J, Chen L (2022) Dopamine receptor D2 regulates GLUA1-containing AMPA receptor trafficking and central sensitization through the PI3K signaling pathway in a male rat model of chronic migraine. J Headache Pain 23: 98. https://doi.org/10.1186/s10194-022-01469-x
  66. Mugnaini M, Trinchero MF, Schinder AF, Piatti VC, Kropff E (2023) Unique potential of immature adult-born neurons for the remodeling of CA3 spatial maps. 2022.09.14.507576
  67. Tan LL, Alfonso J, Monyer H, Kuner R (2021) Neurogenesis in the adult brain functionally contributes to the maintenance of chronic neuropathic pain. Sci Rep 11: 18549. https://doi.org/10.1038/s41598-021-97093-x
  68. Apkarian AV, Mutso AA, Centeno MV, Kan L, Wu M, Levinstein M, Banisadr G, Gobeske KT, Miller RJ, Radulovic J, Hen R, Kessler JA (2016) Role of adult hippocampal neurogenesis in persistent pain. Pain 157: 418–428. https://doi.org/10.1097/j.pain.0000000000000332
  69. Duric V, McCarson KE (2006) Persistent Pain Produces Stress-like Alterations in Hippocampal Neurogenesis and Gene Expression. J Pain 7: 544–555. https://doi.org/10.1016/j.jpain.2006.01.458
  70. Timmerman R, Burm SM, Bajramovic JJ (2018) An Overview of in vitro Methods to Study Microglia. Front Cell Neurosci 12. https://doi.org/10.3389/fncel.2018.00242
  71. Mecha M, Carrillo-Salinas FJ, Feliú A, Mestre L, Guaza C (2016) Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 166: 40–55. https://doi.org/10.1016/j.pharmthera.2016.06.011
  72. Wendimu MY, Hooks SB (2022) Microglia Phenotypes in Aging and Neurodegenerative Diseases. Cells 11: 2091. https://doi.org/10.3390/cells11132091
  73. Loane DJ, Byrnes KR (2010) Role of Microglia in Neurotrauma. Neurotherapeutics 7: 366–377. https://doi.org/10.1016/j.nurt.2010.07.002
  74. Kofler J, Wiley CA (2011) Microglia: Key Innate Immune Cells of the Brain. Toxicol Pathol 39: 103–114. https://doi.org/10.1177/0192623310387619
  75. Tang Y, Le W (2016) Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol Neurobiol 53: 1181–1194. https://doi.org/10.1007/s12035-014-9070-5
  76. Giovannoni F, Quintana FJ (2020) The Role of Astrocytes in CNS Inflammation. Trends Immunol 41: 805–819. https://doi.org/10.1016/j.it.2020.07.007
  77. Sofroniew MV (2015) Astrogliosis. Cold Spring Harb Perspect Biol 7: a020420. https://doi.org/10.1101/cshperspect.a020420
  78. Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte Crosstalk in CNS Inflammation. Neuron 108: 608–622. https://doi.org/10.1016/j.neuron.2020.08.012
  79. Giovannoni F, Quintana FJ (2020) The role of astrocytes in CNS inflammation. Trends Immunol 41: 805–819.
  80. Abd-Ellatief RB, Mohamed HK, Kotb HI (2018) Reactive Astrogliosis in an Experimental Model of Fibromyalgia: Effect of Dexmedetomidine. Cells Tissues Organs 205: 105–119. https://doi.org/10.1159/000488757
  81. Prokhorenko MA, Smyth JT (2023) Astrocyte store-operated calcium entry is required for centrally mediated neuropathic pain. bioRxiv 2023.06.08.544231. https://doi.org/10.1101/2023.06.08.544231
  82. Lee JY, Park CS, Seo KJ, Kim IY, Han S, Youn I, Yune TY (2023) IL-6/JAK2/STAT3 axis mediates neuropathic pain by regulating astrocyte and microglia activation after spinal cord injury. Exp Neurol 370: 114576. https://doi.org/10.1016/j.expneurol.2023.114576
  83. Zhang R, Xu B, Zhang N, Niu J, Zhang M, Zhang Q, Chen D, Shi Y, Chen D, Liu K, Zhang X, Li N, Fang Q (2022) Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain. Brain Behav Immun 102: 23–39. https://doi.org/10.1016/j.bbi.2022.02.006
  84. Hald A, Nedergaard S, Hansen RR, Ding M, Heegaard A-M (2009) Differential activation of spinal cord glial cells in murine models of neuropathic and cancer pain. Eur J Pain Lond Engl 13: 138–145. https://doi.org/10.1016/j.ejpain.2008.03.014
  85. Ben Haim L, Carrillo-de Sauvage M-A, Ceyzériat K, Escartin C (2015) Elusive roles for reactive astrocytes in neurodegenerative diseases. Front Cell Neurosci 9. https://doi.org/10.3389/fncel.2015.00278
  86. Andersen JV, Schousboe A (2023) Milestone Review: Metabolic dynamics of glutamate and GABA mediated neurotransmission – The essential roles of astrocytes. J Neurochem 166: 109–137. https://doi.org/10.1111/jnc.15811
  87. Kriegstein A, Alvarez-Buylla A (2009) The Glial Nature of Embryonic and Adult Neural Stem Cells. Annu Rev Neurosci 32: 149–184. https://doi.org/10.1146/annurev.neuro.051508.135600
  88. Fölsz O, Trouche S, Croset V (2023) Adult-born neurons add flexibility to hippocampal memories. Front Neurosci 17. https://doi.org/10.3389/fnins.2023.1128623
  89. Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A (2021) Neurogenesis after Spinal Cord Injury: State of the Art. Cells 10: 1499. https://doi.org/10.3390/cells10061499
  90. Shechter R, Baruch K, Schwartz M, Rolls A (2011) Touch gives new life: Mechanosensation modulates spinal cord adult neurogenesis. Mol Psychiatry 16: 342–352. https://doi.org/10.1038/mp.2010.116
  91. Katolikova NV, Khudiakov AA, Shafranskaya DD, Prjibelski AD, Masharskiy AE, Mor MS, Golovkin AS, Zaytseva AK, Neganova IE, Efimova EV, Gainetdinov RR, Malashicheva AB (2023) Modulation of Notch Signaling at Early Stages of Differentiation of Human Induced Pluripotent Stem Cells to Dopaminergic Neurons. Int J Mol Sci 24: 1429. https://doi.org/10.3390/ijms24021429
  92. Garcia-Garrote M, Parga JA, Labandeira PJ, Labandeira-Garcia JL, Rodriguez-Pallares J (2021) Dopamine Regulates Adult Neurogenesis in the Ventricular-Subventricular Zone via Dopamine D3 Angiotensin Type 2 Receptor Interactions. Stem Cells 39: 1778–1794. https://doi.org/10.1002/stem.3457
  93. Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q (2023) Activating Endogenous Neurogenesis for Spinal Cord Injury Repair: Recent Advances and Future Prospects. Neurospine 20: 164–180. https://doi.org/10.14245/ns.2245184.296
  94. Zhang Y, Zhao D, Li X, Gao B, Sun C, Zhou S, Ma Y, Chen X, Xu D (2021) The Wnt/β-Catenin Pathway Regulated Cytokines for Pathological Neuropathic Pain in Chronic Compression of Dorsal Root Ganglion Model. Neural Plast 2021: 1–10. https://doi.org/10.1155/2021/6680192
  95. Garcia-Garrote M, Parga JA, Labandeira PJ, Labandeira-Garcia JL, Rodriguez-Pallares J (2021) Dopamine regulates adult neurogenesis in the ventricular-subventricular zone via dopamine D3 angiotensin type 2 receptor interactions. Stem Cells Dayt Ohio 39: 1778–1794. https://doi.org/10.1002/stem.3457
  96. Tail M, Zhang H, Zheng G, Hatami M, Skutella T, Unterberg A, Zweckberger K, Younsi A (2022) The Sonic Hedgehog Pathway Modulates Survival, Proliferation, and Differentiation of Neural Progenitor Cells under Inflammatory Stress In Vitro. Cells 11: 736. https://doi.org/10.3390/cells11040736
  97. Ding S, Yang J, Huang X, Liu L, Hu J, Xu Z, Zhuge Q (2017) Dopamine Burden Induced the Inactivation of Sonic Hedgehog Signaling to Cognitive Decline in Minimal Hepatic Encephalopathy. Aging Dis 8: 442. https://doi.org/10.14336/AD.2016.1123
  98. Iftikhar K, Niaz M, Shahid M, Zehra S, Afzal T, Faizi S, Simjee SU (2024) Hippocampal neurogenesis modulated by Quinic acid: A therapeutic strategy for the neurodegenerative disorders. Hippocampus 34: 540–550. https://doi.org/10.1002/hipo.23630
  99. Stockman SL, Kight KE, Bowers JM, McCarthy MM (2022) Neurogenesis in the neonatal rat hippocampus is regulated by sexually dimorphic epigenetic modifiers. Biol Sex Differ 13: 9. https://doi.org/10.1186/s13293-022-00418-2
  100. Hosseini SM, Alizadeh A, Shahsavani N, Chopek J, Ahlfors J-E, Karimi-Abdolrezaee S (2022) Suppressing CSPG/LAR/PTPσ Axis Facilitates Neuronal Replacement and Synaptogenesis by Human Neural Precursor Grafts and Improves Recovery after Spinal Cord Injury. J Neurosci 42: 3096–3121. https://doi.org/10.1523/JNEUROSCI.2177-21.2022
  101. Heinrich PC, Bode J, Decker M, Graeve L, Martens A, Müller-Newen G, Pflanz S, Schaper F, Schmitz J (2001) Termination and modulation of IL-6-type cytokine signaling. In: Mackiewicz A, Kurpisz M, Żeromski J (eds) Progress in Basic and Clinical Immunology. Springer US. Boston. MA. 153–160.
  102. Fölsz O, Trouche S, Croset V (2023) Adult-born neurons add flexibility to hippocampal memories. Front Neurosci 17: 1128623. https://doi.org/10.3389/fnins.2023.1128623
  103. Gomes-Leal W (2021) Adult Hippocampal Neurogenesis and Affective Disorders: New Neurons for Psychic Well-Being. Front Neurosci 15: 594448. https://doi.org/10.3389/fnins.2021.594448
  104. Kempermann G (2022) What Is Adult Hippocampal Neurogenesis Good for? Front Neurosci 16: 852680. https://doi.org/10.3389/fnins.2022.852680
  105. Li H, Tamura R, Hayashi D, Asai H, Koga J, Ando S, Yokota S, Kaneko J, Sakurai K, Sumiyoshi A, Yamamoto T, Hikishima K, Tanaka KZ, McHugh TJ, Hisatsune T (2023) Dentate Neurogenesis Modulates Dorsal Hippocampal Excitation/Inhibition Balance Crucial for Cognitive Flexibility. bioRxiv 2023.02.22.529526. https://doi.org/10.1101/2023.02.22.529526
  106. Mills EP, Keay KA, Henderson LA (2021) Brainstem Pain-Modulation Circuitry and Its Plasticity in Neuropathic Pain: Insights From Human Brain Imaging Investigations. Front Pain Res 2: 705345. https://doi.org/10.3389/fpain.2021.705345
  107. Zhao Y, Zhang L, Wang M, Yu J, Yang J, Liu A, Yao H, Liu X, Shen Y, Guo B, Wang Y, Wu S (2018) Anxiety Specific Response and Contribution of Active Hippocampal Neural Stem Cells to Chronic Pain Through Wnt/β-Catenin Signaling in Mice. Front Mol Neurosci 11: 296. https://doi.org/10.3389/fnmol.2018.00296
  108. Egorova E, Starinets A, Tyrtyshnaia A, Ponomarenko A, Manzhulo I (2019) Hippocampal Neurogenesis in Conditions of Chronic Stress Induced by Sciatic Nerve Injury in the Rat. Cells Tissues Organs 207: 58–68. https://doi.org/10.1159/000501236
  109. Tyrtyshnaia A, Manzhulo I, Kipryushina Y, Ermolenko E (2019) Neuroinflammation and adult hippocampal neurogenesis in neuropathic pain and alkyl glycerol ethers treatment in aged mice. Int J Mol Med 43(5): 2153–2163. https://doi.org/10.3892/ijmm.2019.4142
  110. Xie W-S, Shehzadi K, Ma H-L, Liang J-H (2022) A Potential Strategy for Treatment of Neurodegenerative Disordersby Regulation of Adult Hippocampal Neurogenesis in Human Brain. Curr Med Chem 29: 5315–5347. https://doi.org/10.2174/0929867329666220509114232
  111. Gould E, Tanapat P (1999) Stress and hippocampal neurogenesis. Biol Psychiatry 46: 1472–1479. https://doi.org/10.1016/s0006-3223(99)00247-4
  112. Levin OS, Artemiev DV, Brill EV, Kulua TK (2017). Parkinson's disease: Modern approaches to diagnosis and treatment. Pract Med 1(1(102)): 45–51. https://cyberleninka.ru/article/n/bolezn-parkinsona-sovremennye-podhody-k-diagnostike-i-lecheniyu
  113. Grace PM, Hutchinson MR, Maier SF, Watkins LR (2014) Pathological pain and the neuroimmune interface. Nat Rev Immunol 14: 217–231. https://doi.org/10.1038/nri3621
  114. Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Front Neuroendocrinol 33: 315–327. https://doi.org/10.1016/j.yfrne.2012.09.003
  115. Dong X-W, Jia Y, Lu SX, Zhou X, Cohen-Williams M, Hodgson R, Li H, Priestley T (2007) The antipsychotic drug, fluphenazine, effectively reverses mechanical allodynia in rat models of neuropathic pain. Psychopharmacology (Berl) 195: 559–568. https://doi.org/10.1007/s00213-007-0942-5
  116. Qiao Y, Brodnik ZD, Zhao S, Trueblood CT, Li Z, Tom VJ, España RA, Hou S (2021) Spinal Dopaminergic Mechanisms Regulating the Micturition Reflex in Male Rats with Complete Spinal Cord Injury. J Neurotrauma 38: 803–817. https://doi.org/10.1089/neu.2020.7284
  117. Zhu Y, Webster MJ, Mendez Victoriano G, Middleton FA, Massa PT, Weickert CS (2024) Molecular Evidence for Altered Angiogenesis in Neuroinflammation-Associated Schizophrenia and Bipolar Disorder Implicate an Abnormal Midbrain Blood-Brain Barrier. Schizophr Bull sbae184. https://doi.org/10.1093/schbul/sbae184
  118. Debs SR, Rothmond DA, Zhu Y, Weickert CS, Purves-Tyson TD (2024) Molecular evidence of altered stress responsivity related to neuroinflammation in the schizophrenia midbrain. J Psychiatr Res 177: 118–128. https://doi.org/10.1016/j.jpsychires.2024.07.004
  119. Xue S, Cao Z, Wang J, Zhao Q, Han J, Yang W, Sun T (2022) Receptor-Interacting Protein Kinase 3 Inhibition Relieves Mechanical Allodynia and Suppresses NLRP3 Inflammasome and NF-κB in a Rat Model of Spinal Cord Injury. Front Mol Neurosci 15: 861312. https://doi.org/10.3389/fnmol.2022.861312
  120. Jiang W, Huang Y, He F, Liu J, Li M, Sun T, Ren W, Hou J, Zhu L (2016) Dopamine D1 Receptor Agonist A-68930 Inhibits NLRP3 Inflammasome Activation, Controls Inflammation, and Alleviates Histopathology in a Rat Model of Spinal Cord Injury: SPINE 41: E330–E334. https://doi.org/10.1097/BRS.0000000000001287
  121. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760–1765. https://doi.org/10.1126/science.1088417
  122. Vallières L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci Off J Soc Neurosci 22: 486–492. https://doi.org/10.1523/JNEUROSCI.22-02-00486.2002
  123. Iosif RE, Ekdahl CT, Ahlenius H, Pronk CJH, Bonde S, Kokaia Z, Jacobsen S-EW, Lindvall O (2006) Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci Off J Soc Neurosci 26: 9703–9712. https://doi.org/10.1523/JNEUROSCI.2723-06.2006
  124. Whitney NP, Eidem TM, Peng H, Huang Y, Zheng JC (2009) Inflammation mediates varying effects in neurogenesis: Relevance to the pathogenesis of brain injury and neurodegenerative disorders. J Neurochem 108: 1343–1359. https://doi.org/10.1111/j.1471-4159.2009.05886.x
  125. Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100: 13632–13637. https://doi.org/10.1073/pnas.2234031100
  126. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31: 149–160. https://doi.org/10.1016/j.mcn.2005.10.006
  127. Gao M, Dong Q, Zou D, Yang Z, Guo L, Chen Z, Xu R (2025) Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 20(5): 1416-1430. 10.4103/NRR.NRR-D-23-01495
  128. Bylicky MA, Mueller GP, Day RM (2018) Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury. Oxid Med Cell Longev 2018: 6501031. https://doi.org/10.1155/2018/6501031
  129. Körtési T, Nagy-Grócz G, Vécsei L (2024) The role of kynurenines in migraine-related neuroimmune pathways. J Headache Pain 25: 129. https://doi.org/10.1186/s10194-024-01833-z
  130. Miguel-Hidalgo JJ, Pang Y (2021) Role of Neuroinflammation in the Establishment of the Neurogenic Microenvironment in Brain Diseases. Curr Tissue Microenviron Rep 2: 17–28. https://doi.org/10.1007/s43152-021-00028-x
  131. North HF, Weissleder C, Bitar M, Barry G, Fullerton JM, Webster MJ, Weickert CS (2024) RNA-sequencing suggests extracellular matrix and vasculature dysregulation could impair neurogenesis in schizophrenia cases with elevated inflammation. Schizophrenia 10: 50. https://doi.org/10.1038/s41537-024-00466-0
  132. Inta D, Meyer-Lindenberg A, Gass P (2011) Alterations in Postnatal Neurogenesis and Dopamine Dysregulation in Schizophrenia: A Hypothesis. Schizophr Bull 37: 674–680. https://doi.org/10.1093/schbul/sbq134
  133. Rusanescu G (2016) Adult spinal cord neurogenesis: A regulator of nociception. Neurogenesis 3: e1256853. https://doi.org/10.1080/23262133.2016.1256853
  134. Zeilhofer HU (2011) Spinal neuroplasticity in chronic pain. E-Neuroforum 17: 35–41. https://doi.org/10.1007/s13295-011-0018-1
  135. Ohira K (2020) Dopamine as a growth differentiation factor in the mammalian brain. Neural Regen Res 15: 390. https://doi.org/10.4103/1673-5374.266052

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».