The functional condition of the neuromotor apparatus of the calf muscles in rats during the recovery of motor activity after simulated gravitational unloading

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

To reduce the duration of the recovery period after space expeditions, as well as high-quality effective therapy of conditions associated with physical inactivity on Earth, it is necessary to understand the mechanisms of adaptive rearrangements of morphofunctionally different motor systems at all levels of their organization. The aim of the study was to assess the functional condition of the central and peripheral links of the neuromotor apparatus of the rat calf antagonist muscles under conditions of readaptation to the action of the support reaction force and axial loads after simulated gravitational unloading. The study used electromyographic testing methods and also determined the wet and dry weight of the soleus and tibialis anterior muscles. The experimental results showed significant changes in the parameters of reflex and motor responses of the studied muscles. The recorded data indicated a decrease in the reflex excitability of the spinal motor centers on the 1st day of the readaptation period and its increase at the following stages: on the 3rd day for the soleus muscle, on the 7th day for the tibialis anterior. Significant transformations of the functional condition and peripheral parts of the motor systems were also observed, as well as a gradual recovery of muscle weight. More pronounced changes and a longer recovery period were recorded during testing of the slow posterotonic soleus muscle. The information obtained can be useful for developing new and improving existing strategies for motor rehabilitation.

Sobre autores

A. Fedianin

The Volga Region State University of Physical Culture, Sports and Tourism; Kazan Federal University

Autor responsável pela correspondência
Email: artishock23@gmail.com
Rússia, Kazan; Kazan

M. Baltin

The Volga Region State University of Physical Culture, Sports and Tourism; Sirius University of Science and Technology

Email: artishock23@gmail.com
Rússia, Kazan; Sirius Federal Territory

D. Sabirova

Kazan Federal University; Sirius University of Science and Technology

Email: artishock23@gmail.com
Rússia, Kazan; Sirius Federal Territory

T. Baltina

Kazan Federal University

Email: artishock23@gmail.com
Rússia, Kazan

N. Iskakov

The Volga Region State University of Physical Culture, Sports and Tourism

Email: artishock23@gmail.com
Rússia, Kazan

A. Eremeev

Kazan Federal University

Email: artishock23@gmail.com
Rússia, Kazan

Bibliografia

  1. Levik YS (2021) Space Research and New Concepts in the Physiology of Movements. Hum Physiol 47: 785–795. https://doi.org/10.1134/S0362119721070057
  2. Yang W, Fan XL, Zhang H, Di Wu S, Song XA (2008) Effects of hindlimb unloading and reloading on c-fos expression of spinal cord evoked by vibration of rat Achille tendon. Neurosci Lett 439: 1–6. https://doi.org/10.1016/j.neulet.2007.09.022
  3. Герасименко ЮП, Эджертон ВР, Харкема С, Козловская ИБ (2020) Гравитационно зависимые механизмы сенсомоторной регуляции позы и локомоций. Авиакосм экол мед 54: 27–42. [Gerasimenko YuP, Edgerton VR, Harkema S, Kozlovskaya IB (2020) Gravity dependent mechanisms of sensorimotor regulation of posture and locomotion. Aviakosm Ekol Med 54: 27–42. (In Russ)]. https://doi.org/10.21687/0233-528X-2020-54-6-27-42
  4. Hodgson JA, Bodine-Fowler SC, Roy RR, de Leon RD, de Guzman CP, Koslovskaya I, Sirota M, Edgerton VR (1991) Changes in recruitment of rhesus soleus and gastrocnemius muscles following a 14-day spaceflight. Physiologist 34: 102–103. PMID: 2047401
  5. Киренская АВ, Козловская ИБ, Сирота МГ (1986) Влияние иммерсионной гипокинезии на характеристики ритмической активности двигательных единиц камбаловидной мышцы. Физиол чел 12: 627–632. [Kirenskaia AV, Kozlovskaia IB, Sirota MG (1986) Effect of immersion hypokinesia on the characteristics of the rhythmic activity of the motor units of the soleus muscle. Fiziol Chel 12: 627–632. (In Russ)]. PMID: 3758566
  6. Kozlovskaya IB, Kirenskaya AV (2004) Mechanisms of disorders of the characteristics of fine movements in long-term hypokinesia. Neurosci Behav Physiol 34: 747–754. https://doi.org/10.1023/B:NEAB.0000036017.46801.5c
  7. Еремеев АА, Чеботарев МА, Кузнецов МВ, Балтин МЭ, Шенкман БС (2015) Нейромоторный аппарат в условиях гравитационной разгрузки: Центральные и периферические эффекты. Авиакосм экол мед 49: 32–36. [Eremeev AA, Chebotarev MA, Kuznetsov MV, Baltin ME, Shenkman BS (2015) Neuromotor apparatus under gravitational unloading: Central and peripheral effects. Aviakosm Ekol Med 49: 32–36. (In Russ)]. PMID: 25958464
  8. Deschenes MR, Tenny KA, Wilson MH (2006) Increased and decreased activity elicits specific morphological adaptations of the neuromuscular junction. Neuroscience 137: 1277–1283. https://doi.org/10.1016/j.neuroscience.2005.10.042
  9. Shenkman BS, Belova SP, Lomonosova YN, Kostrominova TY, Nemirovskaya TL (2015) Calpain-dependent regulation of the skeletal muscle atrophy following unloading. Arch Biochem Biophys 584: 36–41. https://doi.org/10.1016/j.abb.2015.07.011
  10. Mortreux M, Rosa-Caldwell ME, Stiehl ID, Sung DM, Thomas NT, Fry CS, Rutkove SB (2021) Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 9: e15042. https://doi.org/10.14814/phy2.15042
  11. Shenkman BS (2016) From Slow to Fast: Hypogravity-Induced Remodeling of Muscle Fiber Myosin Phenotype. Acta Natur 8: 47–59. PMID: 28050266
  12. Shenkman BS, Sharlo KA (2021) How Muscle Activity Controls Slow Myosin Expression. J Evol Biochem Phys 57: 605–625. https://doi.org/10.1134/S002209302103011X
  13. Вихлянцев ИМ, Терентьева АВ, Балтина ТВ, Подлубная ЗА (2010) Влияние вибростимуляции опорных зон стопы крысы, а также опорной нагрузки на содержание N2А-изоформы и Т2-фрагмента тайтина в m. soleus в условиях моделируемой гравитации. Авиакосм экол мед 44: 45–49. [Vikhlyantsev IM, Terentyeva AV, Baltina TV, Podlubnaya ZA (2010) Effect of vibrostimulation of support zones of rat paw, as well as support load on N2A isoform and T2 fragment of titin content in m. soleus under simulated gravity conditions. Aviakosm Ekol Med 44: 45–49. (In Russ)].
  14. Frenette J, St-Pierre M, Cote CH, Mylona E, Pizza FX (2002) Muscle impairment occurs rapidly and precedes inflammatory cell accumulation after mechanical loading. Am J Physiol Regul Integr Comp Physiol 282: R351–R357. https://doi.org/10.1152/ajpregu.00189.2001
  15. Narici M, Kayser B, Barattini P, Cerretelli P (2003) Effects of 17-day spaceflight on electrically evoked torque and cross-sectional area of the human triceps surae. Eur J Appl Physiol 90: 275–282. https://doi.org/10.1007/s00421-003-0955-7
  16. Mirzoev TM (2020) Skeletal muscle recovery from disuse atrophy: Protein turnover signaling and strategies for accelerating muscle regrowth. Int J Mol Sci 21: 7940. https://doi.org/10.3390/ijms21217940
  17. Riley DA, Ellis S, Slocum GR, Sedlak FR, Bain JL, Krippendorf BB, Lehman CT, Macias MY, Thompson JL, Vijayan K, De Bruin JA (1985) In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats. J Appl Physiol 81: 133–144. https://doi.org/10.1152/jappl.1996.81.1.133
  18. Krippendorf BB, Riley DA (1993) Distinguishing unloading- versus reloading-induced changes in rat soleus muscle. Muscle Nerve 16: 99–108. https://doi.org/10.1002/mus.880160116
  19. Wood SJ, Paloski WH, Clark JB (2015) Assessing sensorimotor function following ISS with computerized dynamic posturography. Aerosp Med Hum Perform 86: A45–A53. https://doi.org/10.3357/AMHP.EC07.2015
  20. Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ (2023) Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 9: 86. https://doi.org/10.1038/s41526-023-00334-8
  21. ГОСТ 33216 (2014) Руководство по содержанию и уходу за лабораторными животными. Правила содержания и ухода за лабораторными грызунами и кроликами. Москва. Стандартинформ 2019: 15. [GOST 33216 (2014) Guide to the care and maintenance of laboratory animals. Rules for keeping and caring for laboratory rodents and rabbits. Moscow. Standartinform 2019: 15. (In Russ)].
  22. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. [(accessed on 30 June 2023)] Off J Eur Union 2010 276: 33–79. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
  23. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol 8: e1000412. https://doi.org/10.1371/journal.pbio.1000412
  24. Ильин ЕА, Новиков ВЕ (1980) Стенд для моделирования физиологических эффектов невесомости в лабораторных экспериментах с крысами. Косм биол авиакосм мед 14: 79–80. [Ilyin EA, Novikov VE (1980) Stand for modelling the physiological effects of weightlessness in laboratory experiments with rats. Kosm Biol Aviakosm Med 14: 79–80. (In Russ)].
  25. Globus RK, Morey-Holton ER (2016) Hindlimb unloading: Rodent analog for microgravity. J Appl Physiol (1985) 120: 1196–1206. https://doi.org/10.1152/japplphysiol.00997.2015
  26. Eremeev A, Fedianin A, Lvova I, Galiullina N, Eremeev A, Baltina T, Sachenkov O (2019) Functional state of the neuromotor apparatus of the gastrocnemius muscle in rat under microgravity: Effect of spinal cord stimulation. BioNanoScience 9: 433–437. https://doi.org/10.1007/s12668-019-00611-5
  27. Fedianin AO, Baltina TV, Eremeev AA (2021) The functional state of the neuromotor system during hypogravity in a rat. Support load effects. IOP Conference Series: Earth and Environment Sci 853: 012030. https://doi.org/10.1088/1755-1315/853/1/012030
  28. Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: A tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30: 67–80. https://doi.org/10.1016/s0987-7053(00)00062-9
  29. Johannsson J, Duchateau J, Baudry S (2015) Presynaptic inhibition of soleus Ia afferents does not vary with center of pressure displacements during upright standing. Neuroscience 298: 63–73. https://doi.org/10.1016/j.neuroscience.2015.04.010
  30. Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M (2001) Electrical and mechanical Hmax-to-Mmax ratio in power- and endurance-trained athletes. J Appl Physiol 90: 3–9. https://doi.org/10.1152/jappl.2001.90.1.3
  31. Palmieri RM, Ingersoll CD, Hoffman MA (2004) The Hoffmann reflex: Methodologic considerations and applications for use in sports medicine and athletic training research. J Athl Train 39: 268–277.
  32. De-Doncker L, Kasri M, Falempin M (2006) Soleus motoneuron excitability after rat hindlimb unloading using histology and a new electrophysiological approach to record a neurographic analogue of the H-reflex. Exp Neurol 201: 368–374. https://doi.org/10.1016/j.expneurol.2006.04.021
  33. Kozlovskaya IB, Aslanova IF, Grigorieva LS, Kreidich YuV (1982) Experimental analysis of motor effects of weightlessness. Physiologist 25: S49–S52.
  34. Zakirova AZ, Shigueva TA, Tomilovskaya ES, Kozlovskaya IB (2015) Effects of mechanical stimulation of sole support zones on the H-reflex characteristics under conditions of support unloading. Hum Physiol 41: 150–155. https://doi.org/10.1134/S0362119715020176
  35. De-Doncker L, Kasri M, Picquet F, Falempin M (2005) Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery. J Exp Biol 208: 4585–4592. https://doi.org/10.1242/jeb.01931
  36. Gerasimenko YP, Lu DC, Modaber M, Zdunowski S, Gad P, Sayenko DG, Morikawa E, Haakana P, Ferguson AR, Roy RR (2015) Noninvasive reactivation of motor descending control after paralysis. J Neurotrauma 32: 1968–1980. https://doi.org/10.1089/neu.2015.4008
  37. Pavlova NV, Bogacheva IN, Bazhenova EY, Gorsky OV, Moshonkina TR, Gerasimenko YuP (2020) Restoration of Motor Functions in Spinal Rats by Electrical Stimulation of the Spinal Cord and Locomotor Training. Neurosci Behav Physiol 50: 599–606. https://doi.org/10.1007/s11055-020-00941-y
  38. Vikhlyantsev IM, Podlubnaya ZA, Shenkman BS, Kozlovskaya IB (2006) Polymorphism of skeletal muscle titin under the extreme conditions of hibernation and microgravity: the diagnostic value of titin isoforms for choosing approaches to the correction of “hypogravity muscle syndrome”. Dokl Biochem Biophys 407: 88–90. https://doi.org/10.1134/s1607672906020116
  39. Shenkman BS, Kozlovskaya IB (2019) Cellular responses of human postural muscle to dry immersion. Front Physiol 10: 187. https://doi.org/10.3389/fphys.2019.00187
  40. Hník P, Vejsada R, Kasicki S (1981) Reflex and locomotor changes following unilateral deafferentation of rat hind limb assessed by chronic electromyography. Neuroscience 6: 195–203. https://doi.org/10.1016/0306-4522(81)90055-5
  41. Goldberger ME (1988) Partial and complete deafferentation of cat hindlimb: The contribution of behavioral substitution to recovery of motor function. Exp Brain Res 73: 343–353. https://doi.org/10.1007/BF00248226
  42. Gerasimenko YP, McKinney Z, Sayenko DG, Gad P, Gorodnichev RM, Grundfest W, Edgerton VR, Kozlovskaya IB (2017) Spinal and sensory neuromodulation of spinal neuronal networks in humans. Hum Physiol 43: 492–500. https://doi.org/10.1134/S0362119717050061
  43. Saenko IV, Chernikova LA, Khizhnikova AE, Kremneva EI, Kozlovskaya IB (2021) Dynamics of the Processes of Inter- and Intrahemispheric Interactions (Functional Connectivity) of the Brain Motor Zones Responsible for Walking in Neurorehabilitation of Patients with Focal Lesions of the Central Nervous System. Hum Physiol 47: 767–773. https://doi.org/10.1134/S0362119721070082
  44. Hansen CN, Faw TD, White S, Buford JA, Grau JW, Basso DM (2016) Sparing of descending axons rescues interneuron plasticity in the lumbar cord to allow adaptive learning after thoracic spinal cord injury. Front Neural Circuits 10: 11. https://doi.org/10.3389/fncir.2016.00011
  45. Roberts DR, Ricci R, Funke FW, Ramsey P, Kelley W, Carroll JS, Ramsey D, Borckardt JJ, Johnson K, George MS (2007) Lower limb immobilization is associated with increased corticospinal excitability. Exp Brain Res 181: 213–220. https://doi.org/10.1007/s00221-007-0920-5
  46. Lee HJ, Jakovcevski I, Radonjic N, Hoelters L, Schachner M, Irintchev A (2009) Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses. Exp Neurol 216: 365–374. https://doi.org/10.1016/j.expneurol.2008.12.009
  47. Perrier JF, Hounsgaard J (2000) Development and regulation of response properties in spinal cord motoneurons. Brain Res Bull 53: 529–535. https://doi.org/10.1016/s0361-9230(00)00386-5
  48. Шигуева ТА, Закирова АЗ, Томиловская ЕС, Козловская ИБ (2013) Влияние опорной разгрузки на порядок рекрутирования двигательных единиц. Авиакосм экол мед 47: 50–53. [Shigueva TA, Zakirova AZ, Tomilovskaya ES, Kozlovskaya IB (2013) Effect of support deprivation on the sequence of motor units recruiting. Aviakosm Ekol Med 47: 50–53. (In Russ)].
  49. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: Technical aspects. J Appl Physiol 92: 1367–1377. https://doi.org/10.1152/japplphysiol.00969.2001
  50. Juhl OJ 4th, Buettmann EG, Friedman MA, DeNapoli RC, Hoppock GA, Donahue HJ (2021) Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 7: 28. https://doi.org/10.1038/s41526-021-00158-4
  51. Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot O (2010) Angio-adaptation in unloaded skeletal muscle: New insights into an early and muscle type-specific dynamic process. J Physiol 588: 4579–4591. https://doi.org/10.1113/jphysiol.2010.193243
  52. Tanaka M, Kanazashi M, Kondo H, Fujino H (2022) Time course of capillary regression and an expression balance between vascular endothelial growth factor-A and thrombospondin-1 in the soleus muscle of hindlimb unloaded rats. Muscle Nerve 65: 350–360. https://doi.org/10.1002/mus.27478
  53. Shenkman BS, Mirzoev TM, Kozlovskaya IB (2021) Tonic Activity and Gravitational Control of the Postural Muscle. Hum Physiol 47: 744–756. https://doi.org/10.1134/S0362119721070100
  54. Ohira T, Kawano F, Goto K, Kaji H, Ohira Y (2022) Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 136: 104617. https://doi.org/10.1016/j.neubiorev.2022.104617
  55. Ильина-Какуева ЕИ (2005) Динамика восстановления камбаловидной мышцы крыс после атрофии, вызванной вывешиванием. Авиакосм экол мед 39: 38–41. [Il'ina-Kakueva EI (2005) Dynamics of rat's soleus muscle recovery from the suspension-induced atrophy. Aviakosm Ekol Med 39: 38–41. (In Russ)].
  56. Бадалян ЛО, Скворцов ИА (1986) Клиническая электронейромиография: Руководство для врачей. М. Медицина. [Badalian LO, Skvortsov IA (1986) Clinical electroneuromyography: A guide for doctors. M. Medicine. (In Russ)].
  57. Desaphy JF, Pierno S, Liantonio A, De Luca A, Didonna MP, Frigeri A, Nicchia GP, Svelto M, Camerino C, Zallone A, Camerino DC (2005) Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: Effects on the electrical properties and myosin heavy chain profile. Neurobiol Dis 18: 356–365. https://doi.org/10.1016/j.nbd.2004.09.016
  58. Шенкман БС (2012) Реадаптация атрофированной мышцы: от деструкции к синтезу белка. Рос физиол журн им ИМ Сеченова 98: 1471–1489. [Shenkman BS (2012) Recovery of the atrophied muscle: From protein degradation to synthesis. Russ J Physiol 98: 1471–1489. (In Russ)].
  59. Шарло КА, Львова ИД, Тыганов СА, Шенкман БС (2019) Механизмы поддержания экспрессии медленного миозина в волокнах постуральной мышцы при стимуляции опорных афферентов на фоне гравитационной разгрузки. Рос физиол журн им ИМ Сеченова 105: 1561–1570. [Sharlo KA, Lvova ID, Tyganov SA, Shenkman BS (2019) Mechanisms of Slow Myosin Expression Maintainance in Postural Muscle Fibers by Plantar Mechanical Stimulation during Gravitational Unloading. Russ J Physiol 105: 1561–1570. (In Russ)]. https://doi.org/10.1134/S0869813919120094
  60. Mirzoev TM, Paramonova II, Rozhkov SV, Kalashnikova EP, Belova SP, Tyganov SA, Vilchinskaya NA, Shenkman BS (2023) Metformin pre-treatment as a means of mitigating disuse-induced rat soleus muscle wasting. Curr Issues Mol Biol 45: 3068–3086. https://doi.org/10.3390/cimb45040201
  61. Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL (2022) Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 13: 928313. https://doi.org/10.3389/fphys.2022.928313

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».