Effect of conversion cocktail on astrocyte and neuronal status in the primary hippocampal culture of 5xFAD mice with angiotensin-converting enzyme 2 inhibition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Neurodegenerative diseases are intricate pathological conditions characterized by the progressive degeneration and death of neurons in the nervous system. Consequently, researchers are increasingly focusing on strategies that utilize combinations of bioactive chemical compounds to convert other, more stable cell types into functional neurons. Chemical conversion has shown promise, particularly in models consisting solely of astrocytes; however, more realistic experimental systems include various cell types whose interactions may influence the response to chemical conversion. In this study, we investigated the impact of a multicomponent chemical cocktail on cells in mixed astro-neuronal cultures derived from the hippocampus of transgenic mice from the 5xFAD line, a genetic model of Alzheimer's disease (AD). Additionally, we recreated a model that simulates the reduction in ACE2 receptor activity observed in COVID-19 patients, which occurs due to internalization of the receptor after it binds to the coronavirus in order to study the consequences of chemical conversion upon disruption of this enzyme activity in the brain. Our findings indicate that the increase in neuronal density and the emergence of new neurons following exposure to the conversion cocktail in complex multicomponent cell systems become apparent only at later time points in cultures derived from non-transgenic animals, as well as in cultures from the 5xFAD mouse line. This may be attributed to the natural rise in astroglial levels during culture degradation. Notably, ACE2 inhibition significantly impacts the morphology of individual astrocytes and neurons. When we assessed the effects of the chemical cocktail, we observed that its efficacy was influenced by both the transgenic status of the culture and the timing of the conversion cocktail administration in relation to ACE2 inhibition. Cultures derived from transgenic animals exhibited higher susceptibility to both the ACE2 inhibitor and the chemical conversion agents.

Full Text

Restricted Access

About the authors

A. V. Chaplygina

Institute of Cell Biophysics of the Russian Academy of Sciences

Author for correspondence.
Email: shadowhao@yandex.ru
Russian Federation, Pushchino

D. Y. Zhdanova

Institute of Cell Biophysics of the Russian Academy of Sciences

Email: shadowhao@yandex.ru
Russian Federation, Pushchino

R. A. Poltavtseva

Research Center for Obstetrics, Gynecology and Perinatology named after аcademician V.I.Kulakov Ministry of Health of the Russian Federation

Email: shadowhao@yandex.ru
Russian Federation, Moscow

N. V. Bobkova

Institute of Cell Biophysics of the Russian Academy of Sciences

Email: shadowhao@yandex.ru
Russian Federation, Pushchino

References

  1. Lee C, Robinson M, Willerth S (2018) Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules. ACS Chem Neurosci 9. https://doi.org/10.1021/acschemneuro.8b00365
  2. Ma Y, Xie H, Du X, Wang L, Jin X, Zhang Q, Han Y, Sun S, Wang L, Li X, Zhang C, Wang M, Li C, Xu J, Huang Z, Wang X, Zhen C, Deng H (2021) In vivo chemical reprogramming of astrocytes into neurons. Cell Discov 7: 12. https://doi.org/10.1038/s41421-021-00243-8
  3. Liu M-L, Zang T, Zou Y, Chang JC, Gibson JR, Huber KM, Zhang C-L (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons. Nat Commun 4: 2183. https://doi.org/10.1038/ncomms3183
  4. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B, Götz M (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27: 8654–8664. https://doi.org/10.1523/JNEUROSCI.1615-07.2007
  5. Liu F, Zhang Y, Chen F, Yuan J, Li S, Han S, Lu D, Geng J, Rao Z, Sun L, Xu J, Shi Y, Wang X, Liu Y (2021) Neurog2 directly converts astrocytes into functional neurons in midbrain and spinal cord. Cell Death Dis 12: 225. https://doi.org/10.1038/s41419-021-03498-x
  6. Heinrich C, Blum R, Gascón S, Masserdotti G, Tripathi P, Sánchez R, Tiedt S, Schroeder T, Götz M, Berninger B (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8: e1000373. https://doi.org/10.1371/journal.pbio.1000373
  7. Yin J-C, Zhang L, Ma N-X, Wang Y, Lee G, Hou X-Y, Lei Z-F, Zhang F-Y, Dong F-P, Wu G-Y, Chen G (2019) Chemical Conversion of Human Fetal Astrocytes into Neurons through Modulation of Multiple Signaling Pathways. Stem Сell Rep 12: 488–501. https://doi.org/10.1016/j.stemcr.2019.01.003
  8. Cheng L, Gao L, Guan W, Mao J, Hu W, Qiu B, Zhao J, Yu Y, Pei G (2015) Direct conversion of astrocytes into neuronal cells by drug cocktail. Cell Res 25: 1269–1272.
  9. Tan Z, Qin S, Yuan Y, Hu X, Huang X, Liu H, Pu Y, He C, Su Z (2022) NOTCH1 signaling regulates the latent neurogenic program in adult reactive astrocytes after spinal cord injury. Theranostics 12: 4548–4563. https://doi.org/10.7150/thno.71378
  10. Kim YT, Hur E-M, Snider WD, Zhou F-Q (2011) Role of GSK3 Signaling in Neuronal Morphogenesis. Front Mol Neurosci 4: 48. https://doi.org/10.3389/fnmol.2011.00048
  11. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271–280.e8. https://doi.org/10.1016/J.CELL.2020.02.052
  12. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensiv Care Med 46: 586–590. https://doi.org/10.1007/s00134-020-05985-9
  13. Gendron L, Payet M, Gallo-Payet N (2004) The angiotensin type 2 receptor of angiotensin II and neuronal differentiation: from observations to mechanisms. J Mol Endocrinol 31: 359–372.
  14. Ye M, Wysocki J, Gonzalez-Pacheco FR, Salem M, Evora K, Garcia-Halpin L, Poglitsch M, Schuster M, Batlle D (2012) Murine recombinant angiotensin-converting enzyme 2: effect on angiotensin II-dependent hypertension and distinctive angiotensin-converting enzyme 2 inhibitor characteristics on rodent and human angiotensin-converting enzyme 2. Hypertension 60: 730–740. https://doi.org/10.1161/HYPERTENSIONAHA.112.198622
  15. Papasozomenos SC, Binder LI (1986) Microtubule-associated protein 2 (MAP2) is present in astrocytes of the optic nerve but absent from astrocytes of the optic tract. J Neurosci 6: 1748–1756. https://doi.org/10.1523/JNEUROSCI.06-06-01748.1986
  16. Farhy-Tselnicker I, Boisvert MM, Liu H, Dowling C, Erikson GA, Blanco-Suarez E, Farhy C, Shokhirev MN, Ecker JR, Allen NJ (2021) Activity-dependent modulation of synapse-regulating genes in astrocytes. Elife 10. https://doi.org/10.7554/eLife.70514
  17. Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC, Heron S, Márkus NM, McQueen J, Hampton DW, Torvell M, Tiwari SS, McKay S, Eraso-Pichot A, Zorzano A, Masgrau R, Galea E, Chandran S, Wyllie DJA, Simpson TI, Hardingham GE (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8: 15132. https://doi.org/10.1038/ncomms15132
  18. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2: 185–193. https://doi.org/10.1038/35058528
  19. Baindara P, Sarker MB, Earhart AP, Mandal SM, Schrum AG (2022) NOTCH signaling in COVID-19: a central hub controlling genes, proteins, and cells that mediate SARS-CoV-2 entry, the inflammatory response, and lung regeneration. Front Cell Infect Microbiol 12: 928704. https://doi.org/10.3389/fcimb.2022.928704
  20. Choi M, Lee S-M, Kim D, Im H-I, Kim H-S, Jeong YH (2021) Disruption of the astrocyte-neuron interaction is responsible for the impairments in learning and memory in 5XFAD mice: an Alzheimer’s disease animal model. Mol Brain 14: 111. https://doi.org/10.1186/s13041-021-00823-5
  21. Han X, Zhang T, Liu H, Mi Y, Gou X (2020) Astrocyte Senescence and Alzheimer’s Disease: A Review. Front Aging Neurosci 12: 148. https://doi.org/10.3389/fnagi.2020.00148
  22. Van Gijsel-Bonnello M, Baranger K, Benech P, Rivera S, Khrestchatisky M, de Reggi M, Gharib B (2017) Metabolic changes and inflammation in cultured astrocytes from the 5xFAD mouse model of Alzheimer’s disease: Alleviation by pantethine. PLoS One 12: e0175369. https://doi.org/10.1371/journal.pone.0175369
  23. Neff RA, Wang M, Vatansever S, Guo L, Ming C, Wang Q, Wang E, Horgusluoglu-Moloch E, Song W-M, Li A, Castranio EL, Tcw J, Ho L, Goate A, Fossati V, Noggle S, Gandy S, Ehrlich ME, Katsel P, Schadt E, Cai D, Brennand KJ, Haroutunian V, Zhang B (2021) Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets. Sci Adv 7. https://doi.org/10.1126/sciadv.abb5398

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of chemical conversion cocktail on aged primary cell cultures of the hippocampus of non-transgenic and transgenic 5xFAD mice. Immunopositivity to the astrocyte marker (GFAP – green) and the neuronal marker (MAP2 – red). Scale bar – 250 µm. (a) – Native aged primary cell culture from the hippocampus of non-transgenic animals (nTg). (b) – Effect of conversion cocktail on aged primary cell culture of the hippocampus of non-transgenic animals (nTg conversion). (c) – Native aged primary cell culture of the hippocampus of transgenic animals (Tg). (d) – Effect of conversion cocktail on aged primary cell culture of the hippocampus of transgenic animals (Tg conversion). (e) – Neuronal and astrocytic densities (%) in primary hippocampal cell cultures of non-transgenic animals before and after chemical conversion. (f) – Neuronal and astrocytic densities (%) in primary hippocampal cell cultures of transgenic animals before and after chemical conversion. * – p ≤ 0.001, Mann–Whitney U-test, ** – p ≤ 0.001, t-test. →

Download (3MB)
3. Fig. 2. Effect of chemical conversion cocktail on primary hippocampal cell cultures of non-transgenic animals upon ACE2 inhibition. Immunopositivity to the astrocyte marker (GFAP – green) and neuronal marker (MAP2 – red). Scale bar – 250 µm for panels a–d, scale bar 125 µm for panels a1–d1. (a–a1) – Native primary hippocampal cell culture of non-transgenic mice (nTg). (b–b1) – ACE2 inhibition with MLN-4760. (c–c1) – ​​Administration of conversion cocktail after ACE2 inhibition (Treatment). (d–d1) – Administration of conversion cocktail before ACE2 inhibition (Priming). (e) – Neuronal and astrocytic densities (%) in primary hippocampal cell cultures from non-transgenic mice. * – p < 0.05, one-way ANOVA, Dunn’s post-hoc test. (f) – Area of ​​astrocytes (%) exhibiting double immunopositivity to GFAP/MAP2 markers. * – p < 0.001, one-way ANOVA, Bonferroni’s post-hoc test. (j) – Schematic diagram of the experiment with group assignment. →

Download (3MB)
4. Fig. 3. Effect of chemical conversion cocktail on primary hippocampal cell cultures of transgenic 5xFAD mice upon ACE2 inhibition. Immunopositivity to astrocyte marker (GFAP – green) and neuronal marker (MAP2 – red). Scale bar – 250 µm for panels a–d, scale bar – 125 µm for panels a1–d1. (a–a1) – Native primary hippocampal cell culture of transgenic mice (Tg). (b–b1) – ACE2 inhibition with MLN-4760. (c–c1) – ​​Administration of conversion cocktail after ACE2 inhibition (Treatment). (d–d1) – Administration of conversion cocktail before ACE2 inhibitor (Priming). (e) – Neuronal and astrocytic densities (%) in primary hippocampal cell cultures of transgenic mice. * – p < 0.05, one-way ANOVA, Dunn’s post-hoc test. (f) – Astrocyte area (%) exhibiting double immunopositivity to GFAP/MAP2 markers. * – p < 0.001, one-way ANOVA, Bonferroni’s post-hoc test.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».