Endothelium, aging and vascular diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aging of the organism is inextricably linked with endothelial dysfunction and the development of vascular diseases. However, age per se is only one of the factors of vascular aging. Reactive oxygen species (ROS) play an important role in the mechanisms of aging and death of endothelial cells (EC). Senescence of EC can be associated with endothelial reprogramming, when cells acquire an immunological phenotype or are transformed into myofibroblasts (endothelial-immune or endothelial-mesenchymal transition, respectively). Atherosclerosis is perhaps the most well-known vascular pathology that initiates other diseases. Atherosclerosis is one of the most well-known vascular diseases, which initiates other, more severe diseases. The mechanisms of atherosclerosis development are associated not only with an increased level of "bad" cholesterol, but also with the desialylation of lipoproteins and the simultaneous desialylation of EC. Many factors related to heredity, lifestyle, frequency and intensity of infectious diseases cause damage to the EC and early aging of blood vessels, which leads to secondary vascular diseases, accelerated aging of the body, cognitive impairment and the development of neurodegenerative diseases. The review highlights some of these processes, their chronological and functional relationships.

Full Text

Restricted Access

About the authors

N. V. Goncharov

Research Institute of Hygiene, Occupational Pathology and Human Ecology; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: ngoncharov@gmail.com
Russian Federation, Leningradsky Region; St. Petersburg

P. I. Popova

City Polyclinic No. 112

Email: ngoncharov@gmail.com
Russian Federation, St. Petersburg

А. D. Nadeev

Institute of Cell Biophysics of the Russian Academy of Sciences

Email: ngoncharov@gmail.com
Russian Federation, Pushchino

D. A. Belinskaia

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: ngoncharov@gmail.com
Russian Federation, St. Petersburg

E. A. Korf

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: ngoncharov@gmail.com
Russian Federation, St. Petersburg

P. V. Avdonin

Koltsov Institute of Development Biology, Russian Academy of Sciences

Email: ngoncharov@gmail.com
Russian Federation, Moscow

References

  1. Dolgyras P, Anyfanti P, Lazaridis A, Gavriilaki E, Koletsos N, Triantafyllou A, Barbara N, Mastrogiannis K, Yiannaki E, Papakonstantinou A, Galanapoulou V, Douma S, Gkaliagkousi E (2024) Endothelial dysfunction and complement activation are independently associated with disease duration in patients with systemic vasculitis. Microvasc Res 154: 104692. https://doi.org/10.1016/j.mvr.2024.104692
  2. Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP (2017) The vascular endothelium: A regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci 54: 458–470.https://doi.org/10.1080/10408363.2017.1394267
  3. Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV (2017) Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxid Med Cell Longev 2017: 9759735. https://doi.org/10.1155/2017/9759735
  4. Di Pietro N, Baldassarre MPA, Cichelli A, Pandolfi A, Formoso G, Pipino C (2020) Role of Polyphenols and Carotenoids in Endothelial Dysfunction: An Overview from Classic to Innovative Biomarkers. Oxid Med Cell Longev 2020: 1–19. https://doi.org/10.1155/2020/6381380
  5. Carge MJ, Liberati DM, Diebel LN (2021) A biomimetic shock model on the effect of endothelial aging on vascular barrier properties. J Trauma Acute Care Surg 91: 849–855. https://doi.org/10.1097/TA.0000000000003207
  6. Zhang J, Li C, Zhang Y, Wu J, Huang Z (2023) Therapeutic potential of nitric oxide in vascular aging due to the promotion of angiogenesis. Chem Biol Drug Des 102: 395–407.
  7. https://doi.org/10.1111/cbdd.14248
  8. Kobayashi R, Sakazaki M, Nagai Y, Okamoto T, Hashimoto Y, Sato K, Seki S, Hata U, Esaki K, Tanigawa R, Mitsuoka A, Funaki A, Niki Y, Hashiguchi T, Negoro H (2024) Habitual isomaltulose intake reduces arterial stiffness associated with postprandial hyperglycemia in middle-aged and elderly people: A randomized controlled trial. Heart Vessels 39: 123–134. https://doi.org/10.1007/s00380-023-02316-y
  9. Shields KL, Jarrett CL, Bisconti AV, Park SH, Craig JC, Broxterman RM, Richardson RS (2023) Preserved endothelium-independent vascular function with aging in men and women: evidence from the peripheral and cerebral vasculature. J Appl Physiol 135: 559–571. https://doi.org/10.1152/japplphysiol.00571.2022
  10. Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A (2023) Alzheimer’s disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 91: 102068. https://doi.org/10.1016/j.arr.2023.102068
  11. Goncharov NV, Popova PI, Golovkin AS, Zalutskaya NM, Palchikova EI, Zanin KV, Avdonin РV (2020) Vascular endotelial dysfunction is a pathogenetic factor in the development of neurodegenerative diseases and cognitive impairment. VM Bekhterev Rev Psychiatr Med Psychol 11–26. https://doi.org/10.31363/2313-7053-2020-3-11-26
  12. Davidson CG, Woodford SJ, Mathur S, Valle DB, Foster D, Kioutchoukova I, Mahmood A, Lucke-Wold B (2023) Investigation into the vascular contributors to dementia and the associated treatments. Explor Neurosci 224–237. https://doi.org/10.37349/en.2023.00023
  13. Raposo N, Périole C, Planton M (2024) In-vivo diagnosis of cerebral amyloid angiopathy: An updated review. Curr Opin Neurol 37: 19–25. https://doi.org/10.1097/WCO.0000000000001236
  14. Vara D, Pula G (2014) Reactive oxygen species: physiological roles in the regulation of vascular cells. Curr Mol Med 14: 1103–1125. https://doi.org/10.2174/1566524014666140603114010
  15. Ткачук В, Тюрин-Кузьмин П, Белоусов В, Воротников А (2012) Пероксид водорода как новый вторичный посредник. Биол мембр 29: 21–37. [Tkachuk V, Tyurin-Kuzmin P, Belousov V, Vorotnikov A (2012) Hydrogen Peroxide as a New Second Messenger. Biol Membr 29: 21-37. (In Russ)].
  16. Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L (2018) Reactive oxygen species: Key regulators in vascular health and diseases. Br J Pharmacol 175: 1279–1292. https://doi.org/10.1111/bph.13828
  17. Надеев АД, Зинченко ВП, Авдонин ПВ, Гончаров НВ (2014) Токсические и сигнальные эффекты активных форм кислорода. Токсикол вестн 22–27 [Nadeev A, Zinchenko V, Avdonin P, Goncharov N (2014) Toxic and signal properties of active forms of oxygen. Toksikol Vest. (In Russ)].
  18. Goncharov NV, Avdonin PV, Nadeev AD, Zharkikh IL, Jenkins RO (2015) Reactive oxygen species in pathogenesis of atherosclerosis. Curr Pharm Des 21: 1134–1146. https://doi.org/10.2174/1381612820666141014142557
  19. Martin-Ventura JL, Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio LM, Moreno JA, Tarin C, Burillo E, Fernandez-Garcia CE, Egido J, Meilhac O, Michel J-B (2012) Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: Detoxifying mechanisms and potential therapeutic options. Thromb Haemost 108: 435–442. https://doi.org/10.1160/TH12-04-0248
  20. Knock GA (2019) NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 145: 385–427. https://doi.org/10.1016/j.freeradbiomed.2019.09.029
  21. Vieceli Dalla Sega F, Zambonin L, Fiorentini D, Rizzo B, Caliceti C, Landi L, Hrelia S, Prata C (2014) Specific aquaporins facilitate Nox-produced hydrogen peroxide transport through plasma membrane in leukaemia cells. Biochim Biophys Acta 1843: 806–814. https://doi.org/10.1016/j.bbamcr.2014.01.011
  22. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci U S A 107: 15681–15686. https://doi.org/10.1073/pnas.1005776107
  23. Shappell SB, Toman C, Anderson DC, Taylor AA, Entman ML, Smith CW (1990) Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J Immunol Baltim Md 1950 144: 2702–2711.
  24. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295: C849-С868. https://doi.org/10.1152/ajpcell.00283.2008
  25. Murdoch CE, Alom-Ruiz SP, Wang M, Zhang M, Walker S, Yu B, Brewer A, Shah AM (2011) Role of endothelial Nox2 NADPH oxidase in angiotensin II-induced hypertension and vasomotor dysfunction. Basic Res Cardiol 106: 527–538. https://doi.org/10.1007/s00395-011-0179-7
  26. Holland JA, Meyer JW, Chang MM, O’Donnell RW, Johnson DK, Ziegler LM (1998) Thrombin stimulated reactive oxygen species production in cultured human endothelial cells. Endothelium 6: 113–121. https://doi.org/10.3109/10623329809072198
  27. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, Alom-Ruiz S, Anilkumar N, Ouattara A, Cave AC, Walker SJ, Grieve DJ, Charles RL, Eaton P, Brewer AC, Shah AM (2011) Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol 31: 1368–1376. https://doi.org/10.1161/ATVBAHA.110.219238
  28. Tobolska A, Jabłońska AE, Suwińska A, Wawrzyniak UE, Wróblewski W, Wezynfeld NE (2024) The effect of histidine, histamine, and imidazole on electrochemical properties of Cu(II) complexes of Aβ peptides containing His-2 and His-3 motifs. Dalton Trans Camb Engl 2003 53: 15359–15371. https://doi.org/10.1039/d4dt01354a
  29. Avdonin PV, Rybakova EYu, Avdonin PP, Trufanov SK, Mironova GYu, Tsitrina AA, Goncharov NV (2019) VAS2870 Inhibits Histamine-Induced Calcium Signaling and vWF Secretion in Human Umbilical Vein Endothelial Cells. Cells 8: 196. https://doi.org/10.3390/cells8020196
  30. Zharkich IL, Nadeev AD, Tsitrin EB, Goncharov NV, Avdonin PV (2016) Suppression of Histamine-Induced Relaxation of Rat Aorta and Calcium Signaling in Endothelial Cells by Two-Pore Channel Blocker trans-NED19 and Hydrogen Peroxide. Izv Akad Nauk Ser Biol 430–438.
  31. Lange S, Heger J, Euler G, Wartenberg M, Piper HM, Sauer H (2009) Platelet-derived growth factor BB stimulates vasculogenesis of embryonic stem cell-derived endothelial cells by calcium-mediated generation of reactive oxygen species. Cardiovasc Res 81: 159–168. https://doi.org/10.1093/cvr/cvn258
  32. Thannickal VJ, Hassoun PM, White AC, Fanburg BL (1993) Enhanced rate of H2O2 release from bovine pulmonary artery endothelial cells induced by TGF-beta 1. Am J Physiol 265: L622-L626. https://doi.org/10.1152/ajplung.1993.265.6.L622
  33. Matsubara T, Ziff M (1986) Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol Baltim Md 1950 137: 3295–3298
  34. Knopp T, Jung R, Wild J, Bochenek ML, Efentakis P, Lehmann A, Bieler T, Garlapati V, Richter C, Molitor M, Perius K, Finger S, Lagrange J, Ghasemi I, Zifkos K, Kommoss KS, Masri J, Reißig S, Randriamboavonjy V, Wunderlich T, Hövelmeyer N, Weber ANR, Mufazalov IA, Bosmann M, Bechmann I, Fleming I, Oelze M, Daiber A, Münzel T, Schäfer K, Wenzel P, Waisman A, Karbach S (2024) Myeloid cell-derived interleukin-6 induces vascular dysfunction and vascular and systemic inflammation. Eur Heart J Open 4: oeae046. https://doi.org/10.1093/ehjopen/oeae046
  35. Reddy SS, Chauhan P, Maurya P, Saini D, Yadav PP, Barthwal MK (2016) Coagulin-L ameliorates TLR4 induced oxidative damage and immune response by regulating mitochondria and NOX-derived ROS. Toxicol Appl Pharmacol 309: 87–100. https://doi.org/10.1016/j.taap.2016.08.022
  36. Yan S, Sheak JR, Walker BR, Jernigan NL, Resta TC (2023) Contribution of Mitochondrial Reactive Oxygen Species to Chronic Hypoxia-Induced Pulmonary Hypertension. Antioxid Basel Switz 12: 2060. https://doi.org/10.3390/antiox12122060
  37. Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P (2010) Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 13: 1051–1085. https://doi.org/10.1089/ars.2009.2825
  38. Tabet F, Schiffrin EL, Callera GE, He Y, Yao G, Ostman A, Kappert K, Tonks NK, Touyz RM (2008) Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res 103: 149–158. https://doi.org/10.1161/CIRCRESAHA.108.178608
  39. Förstermann U, Xia N, Li H (2017) Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ Res 120: 713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326
  40. Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, Meyhoff CS, Radermacher P (2021) Dangers of hyperoxia. Crit Care 25: 440. https://doi.org/10.1186/s13054-021-03815-y
  41. Smith KA, Schumacker PT (2019) Sensors and signals: The role of reactive oxygen species in hypoxic pulmonary vasoconstriction. J Physiol 597: 1033–1043. https://doi.org/10.1113/JP275852
  42. Abdulmahdi W, Patel D, Rabadi MM, Azar T, Jules E, Lipphardt M, Hashemiyoon R, Ratliff BB (2017) HMGB1 redox during sepsis. Redox Biol 13: 600–607. https://doi.org/10.1016/j.redox.2017.08.001
  43. Hou Y, Wang XF, Lang ZQ, Jin YC, Fu JR, Xv XM, Sun ST, Xin X, Zhang LS (2018) Adiponectin is protective against endoplasmic reticulum stress-induced apoptosis of endothelial cells in sepsis. Braz J Med Biol Res 51: e7747. https://doi.org/10.1590/1414-431X20187747
  44. Lee Y-J, Kang I-J, Bünger R, Kang Y-H (2004) Enhanced survival effect of pyruvate correlates MAPK and NF-kappaB activation in hydrogen peroxide-treated human endothelial cells. J Appl Physiol (1985) 96: 793–801. https://doi.org/10.1152/japplphysiol.00797.2003
  45. Xie C-L, Hu L-Q, Pan Y-B, Qian Y-N (2015) Propofol attenuation of hydrogen peroxide-induced injury in human umbilical vein endothelial cells involves aldose reductase. Pharm 70: 103–109.
  46. Liu R, Liu H, Ha Y, Tilton RG, Zhang W (2014) Oxidative stress induces endothelial cell senescence via downregulation of Sirt6. Biomed Res Int 2014: 902842. https://doi.org/10.1155/2014/902842
  47. Smedlund K, Bah M, Vazquez G (2012) On the role of endothelial TRPC3 channels in endothelial dysfunction and cardiovascular disease. Cardiovasc Hematol Agents Med Chem 10: 265–274. https://doi.org/10.2174/187152512802651051
  48. Sun L, Yau H-Y, Wong W-Y, Li RA, Huang Y, Yao X (2012) Role of TRPM2 in H(2)O(2)-induced cell apoptosis in endothelial cells. PloS One 7: e43186. https://doi.org/10.1371/journal.pone.0043186
  49. Sumoza-Toledo A, Penner R (2011) TRPM2: A multifunctional ion channel for calcium signalling. J Physiol 589: 1515–1525. https://doi.org/10.1113/jphysiol.2010.201855
  50. Yamamoto S, Shimizu S (2016) Targeting TRPM2 in ROS-Coupled Diseases. Pharm Basel Switz 9: 57. https://doi.org/10.3390/ph9030057
  51. Avdonin PV, Nadeev AD, Tsitrin EB, Tsitrina AA, Avdonin PP, Mironova GYu, Zharkikh IL, Goncharov NV (2017) Involvement of two-pore channels in hydrogen peroxide-induced increase in the level of calcium ions in the cytoplasm of human umbilical vein endothelial cells. Dokl Biochem Biophys 474: 209–212. https://doi.org/10.1134/S1607672917030152
  52. Trufanov SK, Rybakova EYu, Avdonin PP, Tsitrina AA, Zharkikh IL, Goncharov NV, Jenkins RO, Avdonin PV (2019) The Role of Two-Pore Channels in Norepinephrine-Induced [Ca2+]i Rise in Rat Aortic Smooth Muscle Cells and Aorta Contraction. Cells 8: 1144. https://doi.org/10.3390/cells8101144
  53. Neumann P, Gertzberg N, Vaughan E, Weisbrot J, Woodburn R, Lambert W, Johnson A (2006) Peroxynitrite mediates TNF-alpha-induced endothelial barrier dysfunction and nitration of actin. Am J Physiol Lung Cell Mol Physiol 290: L674–L684. https://doi.org/10.1152/ajplung.00391.2005
  54. Liu G, Vogel SM, Gao X, Javaid K, Hu G, Danilov SM, Malik AB, Minshall RD (2011) Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol 31: 1342–1350. https://doi.org/10.1161/ATVBAHA.110.222208
  55. Pattillo CB, Pardue S, Shen X, Fang K, Langston W, Jourd’heuil D, Kavanagh TJ, Patel RP, Kevil CG (2010) ICAM-1 cytoplasmic tail regulates endothelial glutathione synthesis through a NOX4/PI3-kinase-dependent pathway. Free Radic Biol Med 49: 1119–1128. https://doi.org/10.1016/j.freeradbiomed.2010.06.030
  56. Kudryavtsev IV, Garnyuk VV, Nadeev AD, Goncharov NV (2014) Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro. Biochem Mosc Suppl Ser Membr Cell Biol 8: 97–102. https://doi.org/10.1134/S1990747813050103
  57. Терехина ИЛ, Надеев АД, Кожевникова ЛМ, Гончаров НВ, Авдонин ПВ (2012) 5НТ1В- и 5НТ2В-рецепторы вызывают увеличение концентрации ионов кальция в эндотелиальных клетках кровеносных сосудов. Патогенез 10: 70–72 [Terexina IL, Nadeev AD, Kozhevnikova LM, Goncharov NV, Avdonin PV (2012) 5HT1B and 5HT2B receptors cause an increase in the concentration of calcium ions in the endothelial cells of blood vessels. Patogenez. (In Russ)].
  58. Profirovic J, Strekalova E, Urao N, Krbanjevic A, Andreeva AV, Varadarajan S, Fukai T, Hen R, Ushio-Fukai M, Voyno-Yasenetskaya TA (2013) A novel regulator of angiogenesis in endothelial cells: 5-hydroxytriptamine 4 receptor. Angiogenesis 16: 15–28. https://doi.org/10.1007/s10456-012-9296-7
  59. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106: 584–592. https://doi.org/10.1182/blood-2004-12-4942
  60. Войтенко НГ, Гарнюк ВВ, Прокофьева ДС, Гончаров НВ (2015) О новом скрининговом биомаркере для оценки состояния здоровья персонала предприятия по уничтожению химического оружия. Мед труда пром экол 2015: 38–42.
  61. Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival: A review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87: 179–183. https://doi.org/10.1161/01.res.87.3.179
  62. Kang H, Yu H, Fan J, Cao G (2021) Rotigotine protects against oxidized low-density lipoprotein(ox-LDL)-induced damages in human umbilical vein endothelial cells(HUVECs). Bioengineered 12: 10568–10579. https://doi.org/10.1080/21655979.2021.2000224
  63. Zhang L, Li Q, Chen Y, Zhu Q (2021) LncRNA OIP5-AS1 accelerates ox-LDL-treated HUVECs injury by NF-κB pathway via miR-30c-5p. Clin Hemorheol Microcirc 78: 449–460. https://doi.org/10.3233/CH-211130
  64. Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M, Kleinridders A, Wunderlich T, Kashkar H, Utermöhlen O, Brüning JC, Schütze S, Krönke M (2009) Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature 460: 1159–1163. https://doi.org/10.1038/nature08206
  65. Block K, Eid A, Griendling KK, Lee D-Y, Wittrant Y, Gorin Y (2008) Nox4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotensin II: Role in mesangial cell hypertrophy and fibronectin expression. J Biol Chem 283: 24061–24076. https://doi.org/10.1074/jbc.M803964200
  66. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274: 22699–22704. https://doi.org/10.1074/jbc.274.32.22699
  67. Zhong X, Wang K, Wang Y, Wang L, Wang S, Huang W, Jia Z, Dai S-S, Huang Z (2024) Angiotension II directly bind P2X7 receptor to induce myocardial ferroptosis and remodeling by activating human antigen R. Redox Biol 72: 103154. https://doi.org/10.1016/j.redox.2024.103154
  68. Patterson CE, Lum H (2001) Update on pulmonary edema: The role and regulation of endothelial barrier function. Endothelium 8: 75–105. https://doi.org/10.3109/10623320109165319
  69. Carrim N, Arthur JF, Hamilton JR, Gardiner EE, Andrews RK, Moran N, Berndt MC, Metharom P (2015) Thrombin-induced reactive oxygen species generation in platelets: A novel role for protease-activated receptor 4 and GPIbα. Redox Biol 6: 640–647. https://doi.org/10.1016/j.redox.2015.10.009
  70. Fang X-L, Shu G, Yu J-J, Wang L-N, Yang J, Zeng Q-J, Cheng X, Zhang Z-Q, Wang S-B, Gao P, Zhu X-T, Xi Q-Y, Zhang Y-L, Jiang Q-Y (2013) The anorexigenic effect of serotonin is mediated by the generation of NADPH oxidase-dependent ROS. PloS One 8: e53142. https://doi.org/10.1371/journal.pone.0053142
  71. Lee SL, Wang WW, Fanburg BL (1998) Superoxide as an intermediate signal for serotonin-induced mitogenesis. Free Radic Biol Med 24: 855–858. https://doi.org/10.1016/s0891-5849(97)00359-6
  72. Liu Y, Fanburg BL (2006) Serotonin-induced growth of pulmonary artery smooth muscle requires activation of phosphatidylinositol 3-kinase/serine-threonine protein kinase B/mammalian target of rapamycin/p70 ribosomal S6 kinase 1. Am J Respir Cell Mol Biol 34: 182–191. https://doi.org/10.1165/rcmb.2005-0163OC
  73. Rybakova EYu, Avdonin PP, Trufanov SK, Goncharov NV, Avdonin PV (2023) Synergistic Interaction of 5-HT1B and 5-HT2B Receptors in Cytoplasmic Ca2+ Regulation in Human Umbilical Vein Endothelial Cells: Possible Involvement in Pathologies. Int J Mol Sci 24: 13833. https://doi.org/10.3390/ijms241813833
  74. Avdonin PV, Nadeev AD, Mironova GYu, Zharkikh IL, Avdonin PP, Goncharov NV (2019) Enhancement by Hydrogen Peroxide of Calcium Signals in Endothelial Cells Induced by 5-HT1B and 5-HT2B Receptor Agonists. Oxid Med Cell Longev 2019: 1–8. https://doi.org/10.1155/2019/1701478
  75. Alves JV, da Costa RM, Awata WMC, Bruder-Nascimento A, Singh S, Tostes RC, Bruder-Nascimento T (2024) NADPH oxidase 4-derived hydrogen peroxide counterbalances testosterone-induced endothelial dysfunction and migration. Am J Physiol Endocrinol Metab 327: E1–E12. https://doi.org/10.1152/ajpendo.00365.2023
  76. Yu Y, Su F-F, Xu C (2024) Maximakinin reversed H2O2 induced oxidative damage in rat cardiac H9c2 cells through AMPK/Akt and AMPK/ERK1/2 signaling pathways. Biomed Pharmacother 174: 116489. https://doi.org/10.1016/j.biopha.2024.116489
  77. Eller-Borges R, Rodrigues EG, Teodoro ACS, Moraes MS, Arruda DC, Paschoalin T, Curcio MF, da Costa PE, Do Nascimento IR, Calixto LA, Stern A, Monteiro HP, Batista WL (2023) Bradykinin promotes murine melanoma cell migration and invasion through endogenous production of superoxide and nitric oxide. Nitric Oxide Biol Chem 132: 15–26. https://doi.org/10.1016/j.niox.2023.01.006
  78. Deng W, Baki L, Baumgarten CM (2010) Endothelin signalling regulates volume-sensitive Cl- current via NADPH oxidase and mitochondrial reactive oxygen species. Cardiovasc Res 88: 93–100. https://doi.org/10.1093/cvr/cvq125
  79. Sensi SL, Yin HZ, Weiss JH (1999) Glutamate triggers preferential Zn2+ flux through Ca2+ permeable AMPA channels and consequent ROS production. Neuroreport 10: 1723–1727. https://doi.org/10.1097/00001756-199906030-00018
  80. Carriedo SG, Sensi SL, Yin HZ, Weiss JH (2000) AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20: 240–250. https://doi.org/10.1523/JNEUROSCI.20-01-00240.2000
  81. Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G (2021) The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci 13: 654931. https://doi.org/10.3389/fnagi.2021.654931
  82. Yao Z, Tong J, Tan X, Li C, Shao Z, Kim WC, vanden Hoek TL, Becker LB, Head CA, Schumacker PT (1999) Role of reactive oxygen species in acetylcholine-induced preconditioning in cardiomyocytes. Am J Physiol 277: H2504-H2509. https://doi.org/10.1152/ajpheart.1999.277.6.H2504
  83. Wu X, Tian Y, Wang H, Chen H, Hou H, Hu Q (2024) Dual Regulation of Nicotine on NLRP3 Inflammasome in Macrophages with the Involvement of Lysosomal Destabilization, ROS and α7nAChR. Inflammation. https://doi.org/10.1007/s10753-024-02036-z
  84. Safronova VG, Vulfius CA, Shelukhina IV, Mal’tseva VN, Berezhnov AV, Fedotova EI, Miftahova RG, Kryukova EV, Grinevich AA, Tsetlin VI (2016) Nicotinic receptor involvement in regulation of functions of mouse neutrophils from inflammatory site. Immunobiology 221: 761–772. https://doi.org/10.1016/j.imbio.2016.01.016
  85. Novikova IN, Manole A, Zherebtsov EA, Stavtsev DD, Vukolova MN, Dunaev AV, Angelova PR, Abramov AY (2020) Adrenaline induces calcium signal in astrocytes and vasoconstriction via activation of monoamine oxidase. Free Radic Biol Med 159: 15–22. https://doi.org/10.1016/j.freeradbiomed.2020.07.011
  86. May JM, de Haën C (1979) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 254: 2214–2220.
  87. Ceolotto G, Bevilacqua M, Papparella I, Baritono E, Franco L, Corvaja C, Mazzoni M, Semplicini A, Avogaro A (2004) Insulin generates free radicals by an NAD(P)H, phosphatidylinositol 3’-kinase-dependent mechanism in human skin fibroblasts ex vivo. Diabetes 53: 1344–1351. https://doi.org/10.2337/diabetes.53.5.1344
  88. Kang SW (2007) Two axes in platelet-derived growth factor signaling: tyrosine phosphorylation and reactive oxygen species. Cell Mol Life Sci CMLS 64: 533–541. https://doi.org/10.1007/s00018-007-6437-z
  89. Goldman R, Zor U, Meller R, Moshonov S, Fürstenberger G, Seger R (1997) Activation of MAP kinases, cPLA2 and reactive oxygen species formation by EGF and calcium mobilizing agonists in a human keratinocyte cell line. Adv Exp Med Biol 407: 289–293. https://doi.org/10.1007/978-1-4899-1813-0_43
  90. Thannickal VJ, Day RM, Klinz SG, Bastien MC, Larios JM, Fanburg BL (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 14: 1741–1748. https://doi.org/10.1096/fj.99-0878com
  91. Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270: 11727–11730. https://doi.org/10.1074/jbc.270.20.11727
  92. Hennet T, Richter C, Peterhans E (1993) Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J 289 (Pt 2): 587–592. https://doi.org/10.1042/bj2890587
  93. Meier B, Radeke HH, Selle S, Younes M, Sies H, Resch K, Habermehl GG (1989) Human fibroblasts release reactive oxygen species in response to interleukin-1 or tumour necrosis factor-alpha. Biochem J 263: 539–545. https://doi.org/10.1042/bj2630539
  94. De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK (1998) Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 329(Pt 3): 653–657. https://doi.org/10.1042/bj3290653
  95. Schwabe RF, Brenner DA (2006) Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: Role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290: G583-G589. https://doi.org/10.1152/ajpgi.00422.2005
  96. Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, Sanders K, Kennedy T, Hoidal J (2009) NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol 296: L489-L499. https://doi.org/10.1152/ajplung.90488.2008
  97. Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77: 540–551. https://doi.org/10.1002/jnr.20180
  98. Franceschelli S, Pesce M, Vinciguerra I, Ferrone A, Riccioni G, Patruno A, Grilli A, Felaco M, Speranza L (2011) Licocalchone-C extracted from Glycyrrhiza glabra inhibits lipopolysaccharide-interferon-γ inflammation by improving antioxidant conditions and regulating inducible nitric oxide synthase expression. Mol Basel Switz 16: 5720–5734. https://doi.org/10.3390/molecules16075720
  99. Spulber S, Edoff K, Hong L, Morisawa S, Shirahata S, Ceccatelli S (2012) Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PloS One 7: e42078. https://doi.org/10.1371/journal.pone.0042078
  100. Muzykantov VR, Sakharov DV, Domogatsky SP, Goncharov NV, Danilov SM (1987) Directed targeting of immunoerythrocytes provides local protection of endothelial cells from damage by hydrogen peroxide. Am J Pathol 128: 276–285. i (2014) The effects of biogenic and abiogenic disulphides on endothelial cells in culture: Comparison of three methods of viability assessment. Cell Tissue Biol 8: 389–399. https://doi.org/10.1134/s1990519x1405006x
  101. Song W, Pu J, He B (2014) Tanshinol protects human umbilical vein endothelial cells against hydrogen peroxide-induced apoptosis. Mol Med Rep 10: 2764–2770. https://doi.org/10.3892/mmr.2014.2541
  102. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G, Nomenclature Committee on Cell Death 2009 (2009) Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16: 3–11. https://doi.org/10.1038/cdd.2008.150
  103. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nuñez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon H-U, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107–120. https://doi.org/10.1038/cdd.2011.96
  104. Mutin M, Dignat‐George F, Sampol J (1997) Immunologic phenotype of cultured endothelial cells: Quantitative analysis of cell surface molecules. Tissue Antigens 50: 449–458. https://doi.org/10.1111/j.1399-0039.1997.tb02899.x
  105. Goncharov NV, Popova PI, Avdonin PP, Kudryavtsev IV, Serebryakova MK, Korf EA, Avdonin PV (2020) Markers of Endothelial Cells in Normal and Pathological Conditions. Biochem Mosc Suppl Ser Membr Cell Biol 14: 167–183. https://doi.org/10.1134/S1990747819030140
  106. Goncharov NV, Terpilowski MA, Nadeev AD, Kudryavtsev IV, Serebriakova MK, Zinchenko VP, Avdonin PV (2018) Cytotoxic Power of Hydrogen Peroxide Effect on Endothelial Cells in vitro. Biochem Mosc Suppl Ser Membr Cell Biol 12: 180–188. https://doi.org/10.1134/S199074781802006X
  107. Гончаров НВ, Терпиловский МА, Соболев ВЕ, Корф ЕА, Белинская ДА (2019) Проблема безопасности применения нутрицевтиков. Успехи совр биол 139: 487–499. https://doi.org/10.1134/S0042132419050041
  108. Erusalimsky JD (2009) Vascular endothelial senescence: From mechanisms to pathophysiology. J Appl Physiol (1985) 106: 326–332. https://doi.org/10.1152/japplphysiol.91353.2008
  109. Kida Y, Goligorsky MS (2016) Sirtuins, Cell Senescence, and Vascular Aging. Can J Cardiol 32: 634–641. https://doi.org/10.1016/j.cjca.2015.11.022
  110. Zhang L, Wu X, Hong L (2024) Endothelial Reprogramming in Atherosclerosis. Bioengineering 11: 325. https://doi.org/10.3390/bioengineering11040325
  111. Chen P-Y, Qin L, Baeyens N, Li G, Afolabi T, Budatha M, Tellides G, Schwartz MA, Simons M (2015) Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest 125: 4514–4528. https://doi.org/10.1172/JCI82719
  112. Piera-Velazquez S, Mendoza FA, Jimenez SA (2016) Endothelial to Mesenchymal Transition (EndoMT) in the Pathogenesis of Human Fibrotic Diseases. J Clin Med 5: 45. https://doi.org/10.3390/jcm5040045
  113. Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM, Gopalan B, Stylianou E, Fiocchi C (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179: 2660–2673. https://doi.org/10.1016/j.ajpath.2011.07.042
  114. Patschan D, Schwarze K, Henze E, Patschan S, Müller GA (2016) Endothelial autophagy and Endothelial-to-Mesenchymal Transition (EndoMT) in eEPC treatment of ischemic AKI. J Nephrol 29: 637–644. https://doi.org/10.1007/s40620-015-0222-0
  115. Wang J, Feng Y, Wang Y, Xiang D, Zhang X, Yuan F (2017) Autophagy regulates Endothelial-Mesenchymal transition by decreasing the phosphorylation level of Smad3. Biochem Biophys Res Commun 487: 740–747. https://doi.org/10.1016/j.bbrc.2017.04.130
  116. Mendoza FA, Mansoor M, Jimenez SA (2016) Treatment of Rapidly Progressive Systemic Sclerosis: Current and Futures Perspectives. Expert Opin Orphan Drugs 4: 31–47. https://doi.org/10.1517/21678707.2016.1114454
  117. Ubil E, Duan J, Pillai ICL, Rosa-Garrido M, Wu Y, Bargiacchi F, Lu Y, Stanbouly S, Huang J, Rojas M, Vondriska TM, Stefani E, Deb A (2014) Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514: 585–590. https://doi.org/10.1038/nature13839
  118. Muller L, Di Benedetto S (2023) From aging to long COVID: exploring the convergence of immunosenescence, inflammaging, and autoimmunity. Front Immunol 14: 1298004. https://doi.org/10.3389/fimmu.2023.1298004
  119. Sorrenti V, Benedetti F, Buriani A, Fortinguerra S, Caudullo G, Davinelli S, Zella D, Scapagnini G (2022) Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals 15: 912. https://doi.org/10.3390/ph15080912
  120. Immanuel J, Yun S (2023) Vascular Inflammatory Diseases and Endothelial Phenotypes. Cells 12: 1640. https://doi.org/10.3390/cells12121640
  121. Edfeldt K, Swedenborg J, Hansson GK, Yan Z (2002) Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105: 1158–1161.
  122. Leeuwenberg JF, Van Damme J, Meager T, Jeunhomme TM, Buurman WA (1988) Effects of tumor necrosis factor on the interferon-gamma-induced major histocompatibility complex class II antigen expression by human endothelial cells. Eur J Immunol 18: 1469–1472. https://doi.org/10.1002/eji.1830180925
  123. Bradley JR, Johnson DR, Pober JS (1993) Endothelial activation by hydrogen peroxide. Selective increases of intercellular adhesion molecule-1 and major histocompatibility complex class I. Am J Pathol 142: 1598–1609.
  124. Mishima K, Watabe T, Saito A, Yoshimatsu Y, Imaizumi N, Masui S, Hirashima M, Morisada T, Oike Y, Araie M, Niwa H, Kubo H, Suda T, Miyazono K (2007) Prox1 induces lymphatic endothelial differentiation via integrin alpha9 and other signaling cascades. Mol Biol Cell 18: 1421–1429. https://doi.org/10.1091/mbc.e06-09-0780
  125. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22: 3282–3291. https://doi.org/10.1101/gad.1727208
  126. Andueza A, Kumar S, Kim J, Kang D-W, Mumme HL, Perez JI, Villa-Roel N, Jo H (2020) Endothelial Reprogramming by Disturbed Flow Revealed by Single-Cell RNA and Chromatin Accessibility Study. Cell Rep 33: 108491. https://doi.org/10.1016/j.celrep.2020.108491
  127. Tamargo IA, Baek KI, Kim Y, Park C, Jo H (2023) Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 20: 738–753. https://doi.org/10.1038/s41569-023-00883-1
  128. Mai J, Virtue A, Shen J, Wang H, Yang X-F (2013) An evolving new paradigm: endothelial cells – conditional innate immune cells. J Hematol Oncol 6: 61. https://doi.org/10.1186/1756-8722-6-61
  129. Ghibelli L, Nosseri C, Coppola S, Maresca V, Dini L (1995) The increase in H2O2-induced apoptosis by ADP-ribosylation inhibitors is related to cell blebbing. Exp Cell Res 221: 470–477. https://doi.org/10.1006/excr.1995.1398
  130. Yamauchi S, Kawamura K, Okamoto S, Morinaga T, Jiang Y, Shingyoji M, Sekine I, Kubo S, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M (2015) Replication-competent adenoviruses with the type 35-derived fiber-knob region achieve reactive oxygen species-dependent cytotoxicity and produce greater toxicity than those with the type 5-derived region in pancreatic carcinoma. Apoptosis Int J Program Cell Death 20: 1587–1598. https://doi.org/10.1007/s10495-015-1171-8
  131. Rengarajan M, Hayer A, Theriot JA (2016) Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes. PLoS Pathog 12: e1005603. https://doi.org/10.1371/journal.ppat.1005603
  132. Belcher JD, Chen C, Nguyen J, Milbauer L, Abdulla F, Alayash AI, Smith A, Nath KA, Hebbel RP, Vercellotti GM (2014) Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 123: 377–390. https://doi.org/10.1182/blood-2013-04-495887
  133. Kofler S, Nickel T, Weis M (2005) Role of cytokines in cardiovascular diseases: A focus on endothelial responses to inflammation. Clin Sci Lond Engl 1979 108: 205–213. https://doi.org/10.1042/CS20040174
  134. Raucci A, Macrì F, Castiglione S, Badi I, Vinci MC, Zuccolo E (2021) MicroRNA-34a: the bad guy in age-related vascular diseases. Cell Mol Life Sci 78: 7355–7378. https://doi.org/10.1007/s00018-021-03979-4
  135. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes De Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton A, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis JR, Catapano AL, Chugh S, Cooper LT, Coresh J, Criqui MH, DeCleene NK, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Sola J, Fowkes FGR, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum NJ, Koroshetz WJ, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Misganaw AT, Mokdad AH, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Oliveira GMM, Otto CM, Owolabi MO, Pratt M, Rajagopalan S, Reitsma MB, Ribeiro ALP, Rigotti NA, Rodgers A, Sable CA, Shakil SS, Sliwa K, Stark BA, Sundström J, Timpel P, Tleyjeh II, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke LJ, Abbasi-Kangevari M, Abdi A, Abedi A, Aboyans V, Abrha WA, Abu-Gharbieh E, Abushouk AI, Acharya D, Adair T, Adebayo OM, Ademi Z, Advani SM, Afshari K, Afshin A, Agarwal G, Agasthi P, Ahmad S, Ahmadi S, Ahmed MB, Aji B, Akalu Y, Akande-Sholabi W, Aklilu A, Akunna CJ, Alahdab F, Al-Eyadhy A, Alhabib KF, Alif SM, Alipour V, Aljunid SM, Alla F, Almasi-Hashiani A, Almustanyir S, Al-Raddadi RM, Amegah AK, Amini S, Aminorroaya A, Amu H, Amugsi DA, Ancuceanu R, Anderlini D, Andrei T, Andrei CL, Ansari-Moghaddam A, Anteneh ZA, Antonazzo IC, Antony B, Anwer R, Appiah LT, Arabloo J, Ärnlöv J, Artanti KD, Ataro Z, Ausloos M, Avila-Burgos L, Awan AT, Awoke MA, Ayele HT, Ayza MA, Azari S, B DB, Baheiraei N, Baig AA, Bakhtiari A, Banach M, Banik PC, Baptista EA, Barboza MA, Barua L, Basu S, Bedi N, Béjot Y, Bennett DA, Bensenor IM, Berman AE, Bezabih YM, Bhagavathula AS, Bhaskar S, Bhattacharyya K, Bijani A, Bikbov B, Birhanu MM, Boloor A, Brant LC, Brenner H, Briko NI, Butt ZA, Caetano Dos Santos FL, Cahill LE, Cahuana-Hurtado L, Cámera LA, Campos-Nonato IR, Cantu-Brito C, Car J, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Catalá-López F, Cerin E, Charan J, Chattu VK, Chen S, Chin KL, Choi J-YJ, Chu D-T, Chung S-C, Cirillo M, Coffey S, Conti S, Costa VM, Cundiff DK, Dadras O, Dagnew B, Dai X, Damasceno AAM, Dandona L, Dandona R, Davletov K, De La Cruz-Góngora V, De La Hoz FP, De Neve J-W, Denova-Gutiérrez E, Derbew Molla M, Derseh BT, Desai R, Deuschl G, Dharmaratne SD, Dhimal M, Dhungana RR, Dianatinasab M, Diaz D, Djalalinia S, Dokova K, Douiri A, Duncan BB, Duraes AR, Eagan AW, Ebtehaj S, Eftekhari A, Eftekharzadeh S, Ekholuenetale M, El Nahas N, Elgendy IY, Elhadi M, El-Jaafary SI, Esteghamati S, Etisso AE, Eyawo O, Fadhil I, Faraon EJA, Faris PS, Farwati M, Farzadfar F, Fernandes E, Fernandez Prendes C, Ferrara P, Filip I, Fischer F, Flood D, Fukumoto T, Gad MM, Gaidhane S, Ganji M, Garg J, Gebre AK, Gebregiorgis BG, Gebregzabiher KZ, Gebremeskel GG, Getacher L, Obsa AG, Ghajar A, Ghashghaee A, Ghith N, Giampaoli S, Gilani SA, Gill PS, Gillum RF, Glushkova EV, Gnedovskaya EV, Golechha M, Gonfa KB, Goudarzian AH, Goulart AC, Guadamuz JS, Guha A, Guo Y, Gupta R, Hachinski V, Hafezi-Nejad N, Haile TG, Hamadeh RR, Hamidi S, Hankey GJ, Hargono A, Hartono RK, Hashemian M, Hashi A, Hassan S, Hassen HY, Havmoeller RJ, Hay SI, Hayat K, Heidari G, Herteliu C, Holla R, Hosseini M, Hosseinzadeh M, Hostiuc M, Hostiuc S, Househ M, Huang J, Humayun A, Iavicoli I, Ibeneme CU, Ibitoye SE, Ilesanmi OS, Ilic IM, Ilic MD, Iqbal U, Irvani SSN, Islam SMS, Islam RM, Iso H, Iwagami M, Jain V, Javaheri T, Jayapal SK, Jayaram S, Jayawardena R, Jeemon P, Jha RP, Jonas JB, Jonnagaddala J, Joukar F, Jozwiak JJ, Jürisson M, Kabir A, Kahlon T, Kalani R, Kalhor R, Kamath A, Kamel I, Kandel H, Kandel A, Karch A, Kasa AS, Katoto PDMC, Kayode GA, Khader YS, Khammarnia M, Khan MS, Khan MN, Khan M, Khan EA, Khatab K, Kibria GMA, Kim YJ, Kim GR, Kimokoti RW, Kisa S, Kisa A, Kivimäki M, Kolte D, Koolivand A, Korshunov VA, Koulmane Laxminarayana SL, Koyanagi A, Krishan K, Krishnamoorthy V, Kuate Defo B, Kucuk Bicer B, Kulkarni V, Kumar GA, Kumar N, Kurmi OP, Kusuma D, Kwan GF, La Vecchia C, Lacey B, Lallukka T, Lan Q, Lasrado S, Lassi ZS, Lauriola P, Lawrence WR, Laxmaiah A, LeGrand KE, Li M-C, Li B, Li S, Lim SS, Lim L-L, Lin H, Lin Z, Lin R-T, Liu X, Lopez AD, Lorkowski S, Lotufo PA, Lugo A, M NK, Madotto F, Mahmoudi M, Majeed A, Malekzadeh R, Malik AA, Mamun AA, Manafi N, Mansournia MA, Mantovani LG, Martini S, Mathur MR, Mazzaglia G, Mehata S, Mehndiratta MM, Meier T, Menezes RG, Meretoja A, Mestrovic T, Miazgowski B, Miazgowski T, Michalek IM, Miller TR, Mirrakhimov EM, Mirzaei H, Moazen B, Moghadaszadeh M, Mohammad Y, Mohammad DK, Mohammed S, Mohammed MA, Mokhayeri Y, Molokhia M, Montasir AA, Moradi G, Moradzadeh R, Moraga P, Morawska L, Moreno Velásquez I, Morze J, Mubarik S, Muruet W, Musa KI, Nagarajan AJ, Nalini M, Nangia V, Naqvi AA, Narasimha Swamy S, Nascimento BR, Nayak VC, Nazari J, Nazarzadeh M, Negoi RI, Neupane Kandel S, Nguyen HLT, Nixon MR, Norrving B, Noubiap JJ, Nouthe BE, Nowak C, Odukoya OO, Ogbo FA, Olagunju AT, Orru H, Ortiz A, Ostroff SM, Padubidri JR, Palladino R, Pana A, Panda-Jonas S, Parekh U, Park E-C, Parvizi M, Pashazadeh Kan F, Patel UK, Pathak M, Paudel R, Pepito VCF, Perianayagam A, Perico N, Pham HQ, Pilgrim T, Piradov MA, Pishgar F, Podder V, Polibin RV, Pourshams A, Pribadi DRA, Rabiee N, Rabiee M, Radfar A, Rafiei A, Rahim F, Rahimi-Movaghar V, Ur Rahman MH, Rahman MA, Rahmani AM, Rakovac I, Ram P, Ramalingam S, Rana J, Ranasinghe P, Rao SJ, Rathi P, Rawal L, Rawasia WF, Rawassizadeh R, Remuzzi G, Renzaho AMN, Rezapour A, Riahi SM, Roberts-Thomson RL, Roever L, Rohloff P, Romoli M, Roshandel G, Rwegerera GM, Saadatagah S, Saber-Ayad MM, Sabour S, Sacco S, Sadeghi M, Saeedi Moghaddam S, Safari S, Sahebkar A, Salehi S, Salimzadeh H, Samaei M, Samy AM, Santos IS, Santric-Milicevic MM, Sarrafzadegan N, Sarveazad A, Sathish T, Sawhney M, Saylan M, Schmidt MI, Schutte AE, Senthilkumaran S, Sepanlou SG, Sha F, Shahabi S, Shahid I, Shaikh MA, Shamali M, Shamsizadeh M, Shawon MSR, Sheikh A, Shigematsu M, Shin M-J, Shin JI, Shiri R, Shiue I, Shuval K, Siabani S, Siddiqi TJ, Silva DAS, Singh JA, Mtech AS, Skryabin VY, Skryabina AA, Soheili A, Spurlock EE, Stockfelt L, Stortecky S, Stranges S, Suliankatchi Abdulkader R, Tadbiri H, Tadesse EG, Tadesse DB, Tajdini M, Tariqujjaman M, Teklehaimanot BF, Temsah M-H, Tesema AK, Thakur B, Thankappan KR, Thapar R, Thrift AG, Timalsina B, Tonelli M, Touvier M, Tovani-Palone MR, Tripathi A, Tripathy JP, Truelsen TC, Tsegay GM, Tsegaye GW, Tsilimparis N, Tusa BS, Tyrovolas S, Umapathi KK, Unim B, Unnikrishnan B, Usman MS, Vaduganathan M, Valdez PR, Vasankari TJ, Velazquez DZ, Venketasubramanian N, Vu GT, Vujcic IS, Waheed Y, Wang Y, Wang F, Wei J, Weintraub RG, Weldemariam AH, Westerman R, Winkler AS, Wiysonge CS, Wolfe CDA, Wubishet BL, Xu G, Yadollahpour A, Yamagishi K, Yan LL, Yandrapalli S, Yano Y, Yatsuya H, Yeheyis TY, Yeshaw Y, Yilgwan CS, Yonemoto N, Yu C, Yusefzadeh H, Zachariah G, Zaman SB, Zaman MS, Zamanian M, Zand R, Zandifar A, Zarghi A, Zastrozhin MS, Zastrozhina A, Zhang Z-J, Zhang Y, Zhang W, Zhong C, Zou Z, Zuniga YMH, Murray CJL, Fuster V (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J Am Coll Cardiol 76: 2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
  136. Ohlsson L (2010) Dairy products and plasma cholesterol levels. Food Nutr Res 54: 5124. https://doi.org/10.3402/fnr.v54i0.5124
  137. Forrester JS (2010) Redefining normal low-density lipoprotein cholesterol: A strategy to unseat coronary disease as the nation’s leading killer. J Am Coll Cardiol 56: 630–636. https://doi.org/10.1016/j.jacc.2009.11.090
  138. Packard RRS, Libby P (2008) Inflammation in atherosclerosis: From vascular biology to biomarker discovery and risk prediction. Clin Chem 54: 24–38. https://doi.org/10.1373/clinchem.2007.097360
  139. Miller YI, Choi S-H, Fang L, Tsimikas S (2010) Lipoprotein modification and macrophage uptake: Role of pathologic cholesterol transport in atherogenesis. Subcell Biochem 51: 229–251. https://doi.org/10.1007/978-90-481-8622-8_8
  140. Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, Kastelein JJP, Péterfy M, Nieuwdorp M (2010) The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 211: 1–8. https://doi.org/10.1016/j.atherosclerosis.2009.12.027
  141. Badimón L, Vilahur G, Padró T (2009) Lipoproteins, platelets and atherothrombosis. Rev Esp Cardiol 62: 1161–1178. https://doi.org/10.1016/s1885-5857(09)73331-6
  142. Ishigaki Y, Oka Y, Katagiri H (2009) Circulating oxidized LDL: A biomarker and a pathogenic factor. Curr Opin Lipidol 20: 363–369. https://doi.org/10.1097/MOL.0b013e32832fa58d
  143. Twardowski L, Cheng F, Michaelsen J, Winter S, Hofmann U, Schaeffeler E, Müller S, Sonnenberg M, Steuer K, Ott G, Schwab M, Franke UFW, Torzewski M (2015) Enzymatically Modified Low‐Density Lipoprotein Is Present in All Stages of Aortic Valve Sclerosis: Implications for Pathogenesis of the Disease. J Am Heart Assoc 4: e002156. https://doi.org/10.1161/JAHA.115.002156
  144. Orekhov AN, Melnichenko AA, Sobenin IA (2014) Approach to Reduction of Blood Atherogenicity. Oxid Med Cell Longev 2014: 1–8. https://doi.org/10.1155/2014/738679
  145. Sukhorukov VN, Karagodin VP, Orekhov AN (2016) Atherogenic modification of low-density lipoproteins. Biomed Khim 62: 391–402. https://doi.org/10.18097/pbmc20166204391
  146. Nikifirov NG, Zakiev ER, Elizova NV, Sukhorukov VN, Orekhov AN (2017) Multiple-modified Low-Density Lipoprotein as Atherogenic Factor of Patients’; Blood: Development of Therapeutic Approaches to Reduce Blood Atherogenicity. Curr Pharm Des 23: 932–936. https://doi.org/10.2174/1381612823666170124112918
  147. Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci U S A 86: 1372–1376. https://doi.org/10.1073/pnas.86.4.1372
  148. Orekhov AN, Tertov VV, Mukhin DN, Mikhailenko IA (1989) Modification of low density lipoprotein by desialylation causes lipid accumulation in cultured cells: Discovery of desialylated lipoprotein with altered cellular metabolism in the blood of atherosclerotic patients. Biochem Biophys Res Commun 162: 206–211. https://doi.org/10.1016/0006-291x(89)91982-7
  149. Orekhov AN, Tertov VV, Kabakov AE, Adamova IYu, Pokrovsky SN, Smirnov VN (1991) Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation. Arterioscler Thromb 11: 316–326. https://doi.org/10.1161/01.ATV.11.2.316
  150. Tertov VV, Kaplun VV, Sobenin IA, Orekhov AN (1998) Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis 138: 183–195. https://doi.org/10.1016/s0021-9150(98)00023-9
  151. Orekhov A, Khotina V, Sukhorukov V, Sobenin I (2024) Non-oxidative vs Oxidative Forms of Modified Low-density Lipoprotein: What is More Important in Atherogenesis? Curr Med Chem 31: 2309–2313. https://doi.org/10.2174/0109298673294245240102105814
  152. Schauer R (2009) Sialic acids as regulators of molecular and cellular interactions. Curr Opin Struct Biol 19: 507–514. https://doi.org/10.1016/j.sbi.2009.06.003
  153. Iijima R, Takahashi H, Namme R, Ikegami S, Yamazaki M (2004) Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett 561: 163–166.https://doi.org/10.1016/S0014-5793(04)00164-4
  154. Ogasawara Y, Namai T, Yoshino F, Lee M-C, Ishii K (2007) Sialic acid is an essential moiety of mucin as a hydroxyl radical scavenger. FEBS Lett 581: 2473–2477. https://doi.org/10.1016/j.febslet.2007.04.062
  155. Volkhina IV, Butolin EG (2022) Clinical and Diagnostic Significance of Sialic Acids Determination in Biological Material. Biochem Mosc Suppl Ser B Biomed Chem 16: 165–174. https://doi.org/10.1134/S199075082203012X
  156. Fujioka Y, Taniguchi T, Ishikawa Y, Yokoyama M (2000) Significance of acidic sugar chains of apolipoprotein B-100 in cellular metabolism of low-density lipoproteins. J Lab Clin Med 136: 355–362. https://doi.org/10.1067/mlc.2000.110103
  157. Miyagi T, Wada T, Yamaguchi K, Hata K, Shiozaki K (2008) Plasma membrane-associated sialidase as a crucial regulator of transmembrane signalling. J Biochem (Tokyo) 144: 279–285. https://doi.org/10.1093/jb/mvn089
  158. Buschiazzo A, Alzari PM (2008) Structural insights into sialic acid enzymology. Curr Opin Chem Biol 12: 565–572. https://doi.org/10.1016/j.cbpa.2008.06.017
  159. Datta AK (2009) Comparative sequence analysis in the sialyltransferase protein family: Analysis of motifs. Curr Drug Targets 10: 483–498. https://doi.org/10.2174/138945009788488422
  160. Juge N, Tailford L, Owen CD (2016) Sialidases from gut bacteria: A mini-review. Biochem Soc Trans 44: 166–175. https://doi.org/10.1042/BST20150226
  161. Neres J, Bryce RA, Douglas KT (2008) Rational drug design in parasitology: Trans-sialidase as a case study for Chagas disease. Drug Discov Today 13: 110–117. https://doi.org/10.1016/j.drudis.2007.12.004
  162. Lipničanová S, Chmelová D, Ondrejovič M, Frecer V, Miertuš S (2020) Diversity of sialidases found in the human body – A review. Int J Biol Macromol 148: 857–868. https://doi.org/10.1016/j.ijbiomac.2020.01.123
  163. Keil JM, Rafn GR, Turan IM, Aljohani MA, Sahebjam-Atabaki R, Sun X-L (2022) Sialidase Inhibitors with Different Mechanisms. J Med Chem 65: 13574–13593. https://doi.org/10.1021/acs.jmedchem.2c01258
  164. Eguchi H, Ikeda Y, Ookawara T, Koyota S, Fujiwara N, Honke K, Wang PG, Taniguchi N, Suzuki K (2005) Modification of oligosaccharides by reactive oxygen species decreases sialyl lewis x-mediated cell adhesion. Glycobiology 15: 1094–1101. https://doi.org/10.1093/glycob/cwj003
  165. Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S (2023) Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 14: 1606. https://doi.org/10.14336/AD.2023.0131
  166. Cerne D, Jürgens G, Ledinski G, Kager G, Greilberger J, Lukac-Bajalo J (2002) Relationship between the sialic acid content of low-density lipoprotein (LDL) and autoantibodies to oxidized LDL in the plasma of healthy subjects and patients with atherosclerosis. Clin Chem Lab Med 40: 15–20. https://doi.org/10.1515/CCLM.2002.004
  167. Cheeseman J, Kuhnle G, Stafford G, Gardner RA, Spencer DI, Osborn HM (2021) Sialic acid as a potential biomarker for cardiovascular disease, diabetes and cancer. Biomark Med 15: 911–928. https://doi.org/10.2217/bmm-2020-0776
  168. Mezentsev A, Bezsonov E, Kashirskikh D, Baig MS, Eid AH, Orekhov A (2021) Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines 9: 600. https://doi.org/10.3390/biomedicines9060600
  169. Mehr K, Withers SG (2016) Mechanisms of the sialidase and trans-sialidase activities of bacterial sialyltransferases from glycosyltransferase family 80. Glycobiology 26: 353–359. https://doi.org/10.1093/glycob/cwv105
  170. Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta BBA – Gen Subj 1790: 1049–1058. https://doi.org/10.1016/j.bbagen.2009.02.005
  171. Cuniberti LA, Martinez V, Schachter J, Magariños G, Meckert PC, Laguens RP, Levenson J, Werba JP (2005) Sialic acid as a protective barrier against neointima development. Atherosclerosis 181: 225–231. https://doi.org/10.1016/j.atherosclerosis.2005.01.021
  172. Görög P, Born GV (1982) Increased adhesiveness of granulocytes in rabbit ear-chamber blood vessels perfused with neuraminidase. Microvasc Res 23: 380–384. https://doi.org/10.1016/s0026-2862(82)80010-1
  173. Betteridge KB, Arkill KP, Neal CR, Harper SJ, Foster RR, Satchell SC, Bates DO, Salmon AHJ (2017) Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 595: 5015–5035. https://doi.org/10.1113/JP274167
  174. Psefteli P-M, Kitscha P, Vizcay G, Fleck R, Chapple SJ, Mann GE, Fowler M, Siow RC (2021) Glycocalyx sialic acids regulate Nrf2-mediated signaling by fluid shear stress in human endothelial cells. Redox Biol 38: 101816. https://doi.org/10.1016/j.redox.2020.101816
  175. Miyagi T, Yamaguchi K (2012) Mammalian sialidases: Physiological and pathological roles in cellular functions. Glycobiology 22: 880–896. https://doi.org/10.1093/glycob/cws057
  176. Sakarya S, Rifat S, Zhou J, Bannerman DD, Stamatos NM, Cross AS, Goldblum SE (2004) Mobilization of neutrophil sialidase activity desialylates the pulmonary vascular endothelial surface and increases resting neutrophil adhesion to and migration across the endothelium. Glycobiology 14: 481–494. https://doi.org/10.1093/glycob/cwh065
  177. Amith SR, Jayanth P, Franchuk S, Finlay T, Seyrantepe V, Beyaert R, Pshezhetsky AV, Szewczuk MR (2010) Neu1 desialylation of sialyl alpha-2,3-linked beta-galactosyl residues of TOLL-like receptor 4 is essential for receptor activation and cellular signaling. Cell Signal 22: 314–324. https://doi.org/10.1016/j.cellsig.2009.09.038
  178. Kawabe J, Hasebe N (2014) Role of the Vasa Vasorum and Vascular Resident Stem Cells in Atherosclerosis. Biomed Res Int 2014: 1–8. https://doi.org/10.1155/2014/701571
  179. Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J (2018) Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 9: 706. https://doi.org/10.3389/fimmu.2018.00706
  180. Shimizu Y (2022) Mechanism underlying vascular remodeling in relation to circulating CD34-positive cells among older Japanese men. Sci Rep 12: 21823. https://doi.org/10.1038/s41598-022-26089-y
  181. Koueik J, Wesley UV, Dempsey RJ (2023) Pathophysiology, cellular and molecular mechanisms of large and small vessel diseases. Neurochem Int 164: 105499. https://doi.org/10.1016/j.neuint.2023.105499
  182. Erdő F, Krajcsi P (2019) Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Front Aging Neurosci 11: 196. https://doi.org/10.3389/fnagi.2019.00196
  183. Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV (2019) Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 99: 21–78. https://doi.org/10.1152/physrev.00050.2017
  184. Khatri R, McKinney AM, Swenson B, Janardhan V (2012) Blood-brain barrier, reperfusion injury, and hemorrhagic transformation in acute ischemic stroke. Neurology 79. https://doi.org/10.1212/WNL.0b013e3182697e70
  185. Lekoubou A, Ssentongo P, Maffie J, Debroy K, Kwon M, Nguyen C, Pelton M, Watt B, Ceasar J, Dinunno N, Satyasi V, Pascal Kengne A, Bonilha L, Chinchilli VM (2023) Associations of small vessel disease and acute symptomatic seizures in ischemic stroke patients. Epilepsy Behav 145: 109233. https://doi.org/10.1016/j.yebeh.2023.109233
  186. Zhou D, Meng R, Li S, Ya J, Ding J, Shang S, Ding Y, Ji X (2018) Advances in chronic cerebral circulation insufficiency. CNS Neurosci Ther 24: 5–17. https://doi.org/10.1111/cns.12780
  187. Safouris A, Hambye A-S, Sculier C, Papageorgiou SG, Vasdekis SN, Gazagnes M-D, Tsivgoulis G (2015) Chronic brain hypoperfusion due to multi-vessel extracranial atherosclerotic disease: A potentially reversible cause of cognitive impairment. J Alzheimers Dis 43: 23–27. https://doi.org/10.3233/JAD-141203
  188. Wang Y, Tu D, Du J, Han X, Sun Y, Xu Q, Zhai G, Zhou Y (2019) Classification of Subcortical Vascular Cognitive Impairment Using Single MRI Sequence and Deep Learning Convolutional Neural Networks. Front Neurosci 13: 627. https://doi.org/10.3389/fnins.2019.00627
  189. Jokinen H (2006) Cognitive profile of subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry 77: 28–33. https://doi.org/10.1136/jnnp.2005.069120
  190. Vilar-Bergua A, Riba-Llena I, Nafría C, Bustamante A, Llombart V, Delgado P, Montaner J (2016) Blood and CSF biomarkers in brain subcortical ischemic vascular disease: Involved pathways and clinical applicability. J Cereb Blood Flow Metab 36: 55–71. https://doi.org/10.1038/jcbfm.2015.68
  191. Bataille S, Baralla C, Torro D, Buffat C, Berland Y, Alazia M, Loundou A, Michelet P, Vacher-Coponat H (2014) Undercorrection of hypernatremia is frequent and associated with mortality. BMC Nephrol 15: 37. https://doi.org/10.1186/1471-2369-15-37
  192. Liamis G, Barkas F, Megapanou E, Christopoulou E, Makri A, Makaritsis K, Ntaios G, Elisaf M, Milionis H (2019) Hyponatremia in Acute Stroke Patients: Pathophysiology, Clinical Significance, and Management Options. Eur Neurol 82: 32–40. https://doi.org/10.1159/000504475
  193. Caruso P, Signori R, Moretti R (2019) Small vessel disease to subcortical dementia: A dynamic model, which interfaces aging, cholinergic dysregulation and the neurovascular unit. Vasc Health Risk Manag 15: 259–281. https://doi.org/10.2147/VHRM.S190470
  194. Arvanitakis Z, Capuano AW, Leurgans SE, Bennett DA, Schneider JA (2016) Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: A cross-sectional study. Lancet Neurol 15: 934–943. https://doi.org/10.1016/S1474-4422(16)30029-1
  195. Qiu F, Huang Y, Saunders NR, Habgood MD, Dziegielewska KM (2022) Age dependent contribution of entry via the CSF to the overall brain entry of small and large hydrophilic markers. Fluids Barriers CNS 19: 90. https://doi.org/10.1186/s12987-022-00387-z
  196. LeVine SM (2016) Albumin and multiple sclerosis. BMC Neurol 16: 47. https://doi.org/10.1186/s12883-016-0564-9
  197. Candeloro R, Ferri C, Bellini T, Pugliatti M, Castellazzi M (2024) Breaking Barriers: Unveiling Sex-Related Differences in Cerebrospinal Fluid Analysis–A Narrative Review. Biology 13: 420. https://doi.org/10.3390/biology13060420
  198. Toyama K, Spin JM, Mogi M, Tsao PS (2019) Therapeutic perspective on vascular cognitive impairment. Pharmacol Res 146: 104266. https://doi.org/10.1016/j.phrs.2019.104266
  199. Shen R, Ardianto C, Celia C, Sidharta VM, Sasmita PK, Satriotomo I, Turana Y (2023) Brain-derived neurotrophic factor interplay with oxidative stress: Neuropathology approach in potential biomarker of Alzheimer’s disease. Dement Neuropsychol 17: e20230012. https://doi.org/10.1590/1980-5764-dn-2023-0012
  200. Zinellu A, Tommasi S, Sedda S, Mangoni AA (2023) Circulating arginine metabolites in Alzheimer’s disease and vascular dementia: A systematic review and meta-analysis. Ageing Res Rev 92: 102139.https://doi.org/10.1016/j.arr.2023.102139
  201. Goncharov NV, Popova PI, Kudryavtsev IV, Golovkin AS, Savitskaya IV, Avdonin PP, Korf EA, Voitenko NG, Belinskaia DA, Serebryakova MK, Matveeva NV, Gerlakh NO, Anikievich NE, Gubatenko MA, Dobrylko IA, Trulioff AS, Aquino AD, Jenkins RO, Avdonin PV (2024) Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci 25: 1888. https://doi.org/10.3390/ijms25031888
  202. Asgari R, Vaisi-Raygani A, Aleagha MSE, Mohammadi P, Bakhtiari M, Arghiani N (2023) CD147 and MMPs as key factors in physiological and pathological processes. Biomed Pharmacother 157: 113983. https://doi.org/10.1016/j.biopha.2022.113983
  203. Nisa A, Kumar R, Ramasamy S, Kolloli A, Olejnik J, Jalloh S, Gummuluru S, Subbian S, Bushkin Y (2024) Modulations of Homeostatic ACE2, CD147, GRP78 Pathways Correlate with Vascular and Endothelial Performance Markers during Pulmonary SARS-CoV-2 Infection. Cells 13: 432. https://doi.org/10.3390/cells13050432
  204. Cunnane SC, Swerdlow RH, Inzitari M, Olaso‐Gonzalez G, Viña J (2022) Multimodal strategy to rescue the brain in mild cognitive impairment: Ketogenic oral nutrition supplementation with B vitamins and aerobic exercise. Eur J Clin Invest 52: e13806. https://doi.org/10.1111/eci.13806
  205. Guzman-Martinez L, Calfío C, Farias GA, Vilches C, Prieto R, Maccioni RB (2021) New Frontiers in the Prevention, Diagnosis, and Treatment of Alzheimer’s Disease. J Alzheimers Dis 82: S51–S63. https://doi.org/10.3233/JAD-201059
  206. Voss MW, Sutterer M, Weng TB, Burzynska AZ, Fanning J, Salerno E, Gothe NP, Ehlers DK, McAuley E, Kramer AF (2019) Nutritional supplementation boosts aerobic exercise effects on functional brain systems. J Appl Physiol 126: 77–87. https://doi.org/10.1152/japplphysiol.00917.2017
  207. Königstein K, Dipla K, Zafeiridis A (2023) Training the Vessels: Molecular and Clinical Effects of Exercise on Vascular Health–A Narrative Review. Cells 12: 2544. https://doi.org/10.3390/cells12212544
  208. Benincasa G, Coscioni E, Napoli C (2022) Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: Novel opportunities for primary prevention. Biochem Pharmacol 202: 115108. https://doi.org/10.1016/j.bcp.2022.115108
  209. Baldassarre MPA, Pipino C, Pandolfi A, Consoli A, Di Pietro N, Formoso G (2021) Old and New Biomarkers Associated with Endothelial Dysfunction in Chronic Hyperglycemia. Oxid Med Cell Longev 2021: 7887426. https://doi.org/10.1155/2021/7887426

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Graphic abstract

Download (199KB)
3. Fig. 1. Cholesterol and excess ROS generation are key factors in atherogenesis. The process is enhanced by desialylation of LDL and EC by neuraminidase 1 (NEU1). Attachment of monocytes to the endothelium is facilitated by VCAM-1 expression and selectins. Oxidation and other modifications of LDL induce secretion of MCP-1 (macrophage chemotactic protein-1). In the arterial intima, monocytes mature into macrophages. Macrophages express scavenger receptors such as SRA and CD36, which facilitate the uptake of modified LDL and transformation into foamy macrophages, which are rich in cholesterol esters and free fatty acids. Monocytes/macrophages proliferate in the presence of MCP-1 and macrophage colony-stimulating factor (MCSF). Following antigen-specific activation, T cells infiltrate the intima, secreting interferon-γ, which sends signals that help amplify and sustain the inflammatory response. Macrophages secrete MMPs (matrix metalloproteinases), which promote collagen breakdown, allowing cells to migrate within the plaque. Accumulation and aggregation of oxLDL and macrophage infiltration cause the lipid pool to be converted into a necrotic core.

Download (197KB)
4. Fig. 2. Diagram of cause-and-effect relationships that determine the development of vascular diseases, accelerated aging of the body and impairment of cognitive functions.

Download (186KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».