Brain damage in photoinduced ischemia under streptozotocin-induced diabetes in mice with pannexin 1 protein gene knockout

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Diabetes mellitus (DM), along with ischemia, is one of the top ten causes of death in the globalpopulation, according to the latest World Health Organization (WHO) data. Clinical research data have revealed a high risk of stroke and heart attacks in patients with diabetes. However, there is still a lack of understanding of the involvement of pannexin 1 (Panx1) protein in cerebral ischemia combined with DM. In the presented study, we used the Panx1 gene knockout mice in models of streptozotocin-induced diabetes and photoinduced ischemia to investigate the effect of the Panx1 on the severity of ischemic brain damage and systemic inflammation in mice with a combination of cerebral ischemia and diabetes. It has been found that under conditions of experimental diabetes, the knockout of the Panx1 gene significantly reduces the size of the ischemic lesion, stabilizes the ischemia-induced increase in the blood-brain barrier permeability, reduces the number of errors in the sensorimotor test and the level of neutrophils in the blood. It is important to note that the Panx1 knockout exhibits a protective effect only in the presence of diabetes mellitus, without significantly affecting the severity of ischemic brain injury in mice without streptozotocin-induced diabetes. Panx1 knockout also did not affect the severity of hyperglycemia in animals in this diabetes model. It can be assumed that the efficacy of the treatment for pathologies combined with diabetes mellitus can be enhanced by incorporating pannexin channel blockers into the complex therapy, representing a novel approach to addressing these serious conditions.

Full Text

Restricted Access

About the authors

М. А. Nikolaenko

Lomonosov Moscow State University

Email: gorbi67@mail.ru
Russian Federation, Moscow

М. V. Gulyaev

Lomonosov Moscow State University

Email: gorbi67@mail.ru
Russian Federation, Moscow

А. А. Volkova

Lomonosov Moscow State University; Pirogov Russian National Research Medical University

Email: gorbi67@mail.ru
Russian Federation, Moscow; Moscow

L. R. Gorbacheva

Lomonosov Moscow State University; Pirogov Russian National Research Medical University

Author for correspondence.
Email: gorbi67@mail.ru
Russian Federation, Moscow; Moscow

References

  1. Campbell BCV, De Silva D, Macleod MR, Coutts SB, Schwamm LH, Davis SM, Donnan GA (2019) Ischaemic stroke. Nat Rev Dis Primers 5(1): 70. https://doi.org/10.1038/s41572-019-0118-8
  2. Magliano DJ, Boyko EJ; IDF Diabetes Atlas 10th edition scientific committee (2021) IDF DIABETES ATLAS [Internet]. 10th ed. Brussels: International Diabetes Federation.
  3. Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375: 2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9
  4. Bloomgarden Z, Chilton R (2021) Diabetes and stroke: An important complication. J Diabetes 13(3): 184–190. https://doi.org/10.1111/1753-0407.13142
  5. Bennett MVL, Garré JM, Orellana JA, Bukauskas FF, Nedergaard M, Sáez JC (2012) Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res 1487: 3–15. https://doi.org/10.1016/j.brainres.2012.08.042
  6. De Freitas PHM, da Silva Ferreira NC, Fioravante-Rezende JG, de Menezes Santos L, Luiz Alves A, Rozental R (2019) Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neurosci Lett 695: 76–85. https://doi.org/10.1016/j.neulet.2017.11.044
  7. Bargiotas P, Antje K, Hormuzdi SG, Ridder DA, Herb A, Barakat W, Penuela S, von Engelhardt J, Monyer H, Schwaninger M (2011) Pannexins in ischemia-induced neurodegeneration. Proc Natl Acad Sci U S A 108(51): 20772–20777. https://doi.org/10.1073/pnas.1018262108
  8. Cisneros-Mejorado A, Gottlieb M, Cavaliere F, Magnus T, Koch-Nolte F, Scemes E, Pérez-Samartín A, Matute С (2015) Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage. J Cereb Blood Flow Metab 35(5): 843–850. https://doi.org/10.1038/jcbfm.2014.262
  9. Xiong X-X, Gu L-J, Shen J, Kang X-H, Zheng Y-Y, Yue S-B, Zhu S-M (2014) Probenecid protects against transient focal cerebral ischemic injury by inhibiting HMGB1 release and attenuating AQP4 expression in mice. Neurochem Res 39(1): 216–224. https://doi.org/10.1007/s11064-013-1212-z
  10. Freitas-Andrade M, Bechberger JF, MacVicar BA, Viau V, Naus CC (2017) Pannexin1 knockout and blockade reduces ischemic stroke injury in female, but not in male mice. Oncotarget 8(23): 36973–36983. https://doi.org/10.18632/oncotarget.16937
  11. Labat-gest V, Tomasi S (2013) Photothrombotic ischemia: a minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J Vis Exp (76): 50370. https://doi.org/10.3791/50370
  12. Meng XF, Wang XL, Tian XJ, Yang ZH, Chu GP, Zhang J, Li M, Shi J, Zhang C (2014) Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose. Mol Neurobiol 49(2): 673–684. https://doi.org/10.1007/s12035-013-8551-2
  13. Battulin N, Kovalzon VM, Korablev A, Serova I, Kiryukhina OO, Pechkova MG, Bogotskoy KA, Tarasova OS, Panchin Y (2021) Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision. Int J Mol Sci 22(10): 5269. https://doi.org/10.3390/ijms22105269
  14. Furman BL (2021) Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc 1(4): e78. https://doi.org/10.1002/cpz1.78
  15. Galkov M, Gulyaev M, Kiseleva E, Andreev-Andrievskiy A, Gorbacheva L (2020) Methods for detection of brain injury after photothrombosis-induced ischemia in mice: Characteristics and new aspects of their application. J Neurosci Methods 329: 108457. https://doi.org/10.1016/j.jneumeth.2019.108457
  16. Franklin KBJ, Paxinos G (2001) Mouse brain in stereotaxic coordinates. London. Acad Press.
  17. Wu J, Cai Y, Wu X, Ying Y, Tai Y, He M (2021) Transcardiac Perfusion of the Mouse for Brain Tissue Dissection and Fixation. Bio Protoc 11(5): e3988. https://doi.org/10.21769/BioProtoc.3988
  18. Kim GW, Lewén A, Copin J, Watson BD, Chan PH (2001) The cytosolic antioxidant, copper/zinc superoxide dismutase, attenuates blood-brain barrier disruption and oxidative cellular injury after photothrombotic cortical ischemia in mice. Neuroscience 105(4): 1007–1018. https://doi.org/10.1016/S0306-4522(01)00237-8
  19. Baskin YK, Dietrich WD, Green EJ (2003) Two effective behavioral tasks for evaluating sensorimotor dysfunction following traumatic brain injury in mice. J Neurosci Methods 129: 87–93. https://doi.org/10.1016/S0165-0270(03)00212-7
  20. Santos E, Cunha de Oliveira D, Hastreiter A, Silva G, Beltran J, Tsujita M, Crisma A, Neves S, Fock R, Borelli P (2016) Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice. Braz J Veter Res Animal Sci 53: 138. https://doi.org/10.11606/issn.1678-4456.v53i2p138-145
  21. Knezic A, Broughton BRS, Widdop RE, McCarthy CA (2022) Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse. Sci Rep 12(1): 7598. https://doi.org/10.1038/s41598-022-11793-6
  22. Adamson SE, Meher AK, Chiu YH, Sandilos JK, Oberholtzer NP, Walker NN, Hargett SR, Seaman SA, Peirce-Cottler SM, Isakson BE, McNamara CA, Keller SR, Harris TE, Bayliss DA, Leitinger N (2015) Pannexin 1 is required for full activation of insulin-stimulated glucose uptake in adipocytes. Mol Metab 4(9): 610–618. https://doi.org/10.1016/j.molmet.2015.06.009
  23. Berchtold LA, Miani M, Diep TA, Madsen AN, Cigliola V, Colli M, Krivokapic JM, Pociot F, Eizirik DL, Meda P, Holst B, Billestrup N, Størling J (2017) Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis in vitro and impairs glucose tolerance in vivo. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2017.04.001
  24. Wang H, Wang Z, Gao Y, Wang J, Yuan Y, Zhang C, Zhang X (2024) STZ-induced diabetes exacerbates neurons ferroptosis after ischemic stroke by upregulating LCN2 in neutrophils. Exp Neurol 377: 114797. https://doi.org/10.1016/j.expneurol.2024.114797
  25. Babkina II, Mazeeva VV, Morozova MP, Gorbacheva LR (2024) Effect of probenecid on astrocyte activation in vitro. Bulletin of RSMU 1: 40–48. https://doi.org/10.24075/brsmu.2024.00526
  26. Zorena K, Myśliwska J, Myśliwiec M, Balcerska A, Lipowski P, Raczyńska K (2007) Relationship between serum levels of tumor necrosis factor-alpha and interleukin-6 in diabetes mellitus type 1 children. Centr Eur J Immunol 32 (3): 124–128.
  27. Vinolo MA, Ferguson GJ, Kulkarni S, Damoulakis G, Anderson K, Bohlooly YM (2011) SCFAs induce mouse neutrophil chemotaxis through the GPR43 receptor. PLoS One 6: e21205. https://doi.org/10.1371/journal.pone.0021205.
  28. Sina C, Gavrilova O, Förster M, Till A, Derer S, Hildebrand F (2009) G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol 183: 7514–7522. https://doi.org/10.4049/jimmunol.0900063
  29. Dallak M, Al-Ani B, Abdel Kader DH, Eid RA, Haidara MA (2019) Insulin Suppresses Type 1 Diabetes Mellitus-Induced Ventricular Cardiomyocyte Damage Associated with the Inhibition of Biomarkers of Inflammation and Oxidative Stress in Rats. Pharmacology 104(3–4): 157–165. https://doi.org/10.1159/000500898
  30. Adamson SE, Leitinger N (2014) The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett 588(8): 1416–1422. https://doi.org/10.1016/j.febslet.2014.03.009
  31. Pettersson US, Christoffersson G, Massena S, Ahl D, Jansson L, Henriksnäs J, Phillipson M (2011) Increased recruitment but impaired function of leukocytes during inflammation in mouse models of type 1 and type 2 diabetes. 6(7): e22480. https://doi.org/10.1371/journal.pone.0022480

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics of changes in blood glucose levels in mice of the studied groups. WT – wild type (without diabetes), Panx 1 KO – pannexin 1 gene knockout (without diabetes), WTd, KOd – corresponding groups of mice with experimental diabetes. WT n = 7, WTd n = 9, KO n = 18, KOd n = 15. Data are presented as means ± standard deviation. Three-way ANOVA, post hoc Šidák test, differences are significant: ** – p < 0.01, # – p < 0.0001 (compared with the same group on the 1st day of the experiment).

Download (83KB)
3. Fig. 2. Change in body weight in mice of the studied groups on the last day of the experiment compared to the first day. WT – wild type (without diabetes, n = 6), KO – pannexin 1 gene knockout (without diabetes, n = 17); WTd (n = 9), KOd (n = 15) – corresponding groups of mice with diabetes mellitus. Data are presented as means ± standard deviation. Three-way ANOVA, post hoc Šidák test, differences are significant: * – p < 0.05, *** – p < 0.001.

Download (48KB)
4. Fig. 3. Photo-induced ischemia-induced brain injury in wild-type and diabetic Panx1 knockout mice. (a) Volume of ischemic lesion after photothrombosis in wild-type and diabetic Panx1 knockout mice (data normalized to mean values ​​in corresponding control groups, non-diabetic animals (control = 1)), (b) T2-weighted MRI images of brain injury in the studied animal groups. WT n = 11, WTd n = 7, KO n = 21, KOd n = 13. Differences are significant: ** – p < 0.01.

Download (250KB)
5. Fig. 4. Evaluation of Evans blue (EB) extravasation and BBB permeability after photoinduced ischemia in wild-type (WTd) and Panx1 knockout (KOd) mice with diabetes. (a) – comparison of EB extravasation in the studied groups of animals (WT n = 5, WTd n = 8, KO n = 16, KOd n = 14), (b) – comparison of BBB permeability in the studied groups of animals (WT n = 9, WTd n = 4, KO n = 21, KOd n = 9), (c) – visual photographs of the brain after photothrombosis, EB administration a day later and perfusion on the second day after ischemic injury in mice. The data are normalized to the mean values ​​in the corresponding control groups, in animals without diabetes (control = 1). The differences are significant: ** – p < 0.01, *** – p < 0.001.

Download (152KB)
6. Fig. 5. Sensorimotor status of animals in the study groups assessed using the “Grate” test. Change in the proportion (in percent) of motor errors per 100 steps of the animal after FT compared to the values ​​before FT in wild-type mice (WTd, n = 8) and mice with the Panx1 gene knockout (KOd, n = 13) against the background of diabetes. WT n = 5, KO n = 16. Data are normalized to the mean values ​​in the corresponding control groups, in animals without diabetes (control = 1). Differences are reliable: *** – p < 0.001; # – p < 0.0001.

Download (66KB)
7. Fig. 6. Evaluation of neutrophil levels in wild-type (WTd) and Panx1 knockout (KOd) mice with diabetes. (a) comparison of neutrophil counts in diabetic experimental groups before photothrombosis (WT n = 5, WTd n = 9, KO n = 17, KOd n = 15), (b) change in neutrophil counts on the last day of the experiment compared to the first day (24 h after photothrombosis with diabetes, WT n = 6, WTd n = 9, KO n = 16, KOd n = 13). Data are normalized to mean values ​​in the corresponding control groups, in animals without diabetes (control = 1). Differences are significant: ** – p < 0.01.

Download (85KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».