Projection neurons of the prefrontal cortex, their participation in the formation of various forms of behavior and expression in them of brain-derived neurotrophic factor

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The prefrontal cortex (PFC) plays a key role in cognitive plasticity and is involved in various processes of higher nervous activity. At the same time, studying the processes underlying various forms of behavior in which PFC neurons participate is a non-trivial task. The associative functions of the PFC are associated with the nature of the connectivity of this structure with other areas of the brain, which, according to recent data, is much more complex than previously thought. Thus, it becomes clear that the axons of PFC projection neurons have many collaterals projecting to many different targets in the brain. In this review, we highlight the latest results in studying the connectivity of PFC neurons using the latest methods for analyzing projections and single-cell transcriptomes. Brain-derived neurotrophic factor (BDNF) plays an important role in the functioning of these neurons and their projection targets, but the transport of this neurotrophin by PFC projection neurons to structures where it is not locally expressed may be especially important. We review recent results mapping such neurons in the PFC, highlighting Bdnf expression and potential role in the pathogenesis of mental disorders.

Full Text

Restricted Access

About the authors

U. S. Drozd

The Institute of Cytology and Genetic SB RAS

Email: lanshakov@bionet.nsc.ru
Russian Federation, Novosibirsk

Y. A. Frik

The Institute of Cytology and Genetic SB RAS; Novosibirsk State University

Email: lanshakov@bionet.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk

A. V. Smagin

The Institute of Cytology and Genetic SB RAS

Email: lanshakov@bionet.nsc.ru
Russian Federation, Novosibirsk

D. A. Lanshakov

The Institute of Cytology and Genetic SB RAS; Novosibirsk State University; Novosibirsk Medical State University

Author for correspondence.
Email: lanshakov@bionet.nsc.ru
Russian Federation, Novosibirsk; Novosibirsk; Novosibirsk

References

  1. Shipman ML, Johnson GC, Bouton ME, Green JT (2019) Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding. eneuro 6(5): ENEURO.0125–19.2019. https://doi.org/10.1523/ENEURO.0125-19.2019
  2. Liu D, Gu X, Zhu J, Zhang X, Han Z, Yan W, Cheng Q, Hao J, Fan H, Hou R, Chen Z, Chen Y, Li CT (2014) Medial Prefrontal Activity during Delay Period Contributes to Learning of a Working Memory Task. Science 346: 458–463. https://doi.org/10.1126/science.1256573
  3. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, Parker NF, Liang Y, Nectow AR, Pillow JW, Witten IB, Рarker NF, Bhave V, Hur H (2017) Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell 171: 1663–1677.e16. https://doi.org/10.1016/j.cell.2017.11.002
  4. Riceberg JS, Shapiro ML (2017) Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History. J Neurosci 37: 2010–2021. https://doi.org/10.1523/JNEUROSCI.2951-16.2016
  5. Pizzagalli DA, Roberts AC (2022) Prefrontal cortex and depression. Neuropsychopharmacology 47: 225–246. https://doi.org/10.1038/s41386-021-01101-7
  6. Kenwood MM, Kalin NH, Barbas H (2022) The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 47: 260–275. https://doi.org/10.1038/s41386-021-01109-z
  7. Lesh TA, Niendam TA, Minzenberg MJ, Carter CS (2011) Cognitive Control Deficits in Schizophrenia: Mechanisms and Meaning. Neuropsychopharmacology 36: 316–338. https://doi.org/10.1038/npp.2010.156
  8. Nieto RR, Carrasco A, Corral S, Castillo R, Gaspar PA, Bustamante ML, Silva H (2021) BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front Psychiatr 12: 662407. https://doi.org/10.3389/fpsyt.2021.662407
  9. Krishnamurthy K, Yeung MK, Chan AS, Han YMY (2020) Effortful Control and Prefrontal Cortex Functioning in Children with Autism Spectrum Disorder: An fNIRS Study. Brain Sci 10: 880. https://doi.org/10.3390/brainsci10110880
  10. Ilchibaeva T, Tsybko A, Lipnitskaya M, Eremin D, Milutinovich K, Naumenko V, Popova N (2023) Brain-Derived Neurotrophic Factor (BDNF) in Mechanisms of Autistic-like Behavior in BTBR Mice: Crosstalk with the Dopaminergic Brain System. Biomedicines 11: 1482. https://doi.org/10.3390/biomedicines11051482
  11. Arnsten AFT (2009) ADHD and the Prefrontal Cortex. J Pediatr 154: I-S43. https://doi.org/10.1016/j.jpeds.2009.01.018
  12. Donahue CJ, Glasser MF, Preuss TM, Rilling JK, Van Essen DC (2018) Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proc Natl Acad Sci U S A 115. https://doi.org/10.1073/pnas.1721653115
  13. Goldman-Rakic PS Topography of cognition: Parallel distributed networks in primate association cortex. Ann Rev Neurosci 11: 137–156. https://doi.org/10.1146/annurev.ne.11.030188.001033
  14. Le Merre P, Ährlund-Richter S, Carlén M (2021) The mouse prefrontal cortex: Unity in diversity. Neuron 109: 1925–1944. https://doi.org/10.1016/j.neuron.2021.03.035
  15. Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer J-F, Durstewitz D, Leibold C, Diester I (2023) Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 111: 1020–1036. https://doi.org/10.1016/j.neuron.2023.03.017
  16. Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, Ma D, Wang H, Yang Q, Chen Z, Liu D, Qiu S, Wang X, Wang D, Wang X, Ren B, Liu Q, Chen T, Shi X, Yao H, Xu C, Li CT, Sun Y, Li A, Luo Q, Gong H, Xu N, Yan J (2022) Single-Neuron Projectome of Mouse Prefrontal Cortex. Nature Neurosci 25: 515–529. https://doi.org/10.1038/s41593-022-01041-5
  17. Arévalo JC, Deogracias R (2023) Mechanisms Controlling the Expression and Secretion of BDNF. Biomolecules 13: 789. https://doi.org/10.3390/biom13050789
  18. Galloway EM, Woo NH, Lu B (2008) Chapter 15 Persistent neural activity in the prefrontal cortex: A mechanism by which BDNF regulates working memory? In: Progress in Brain Research. Elsevier. 251–266. https://doi.org/10.1016/S0079-6123(07)00015-5
  19. Autry AE, Monteggia LM (2012) Brain-Derived Neurotrophic Factor and Neuropsychiatric Disorders. Pharmacol Rev 64: 238–258. https://doi.org/10.1124/pr.111.005108
  20. Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y (2025) Brain region–specific roles of brain-derived neurotrophic factor in social stress–induced depressive-like behavior. Neural Regener Res 20: 159–173. https://doi.org/10.4103/NRR.NRR-D-23-01419
  21. Deyama S, Duman RS (2020) Neurotrophic mechanisms underlying the rapid and sustained antidepressant actions of ketamine. Pharmacol Biochem Behav 188: 172837. https://doi.org/10.1016/j.pbb.2019.172837
  22. Li Z, Ruan M, Chen J, Fang Y (2021) Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neurosci Bull 37: 863–880. https://doi.org/10.1007/s12264-021-00638-3
  23. De-Paula VJ, Gattaz WF, Forlenza OV (2016) Long-term lithium treatment increases intracellular and extracellular brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons at subtherapeutic concentrations. Bipolar Disord 18: 692–695. https://doi.org/10.1111/bdi.12449
  24. Liu D, Tang Q-Q, Wang D, Song S-P, Yang X-N, Hu S-W, Wang Z-Y, Xu Z, Liu H, Yang J-X, Montgomery SE, Zhang H, Han M-H, Ding H-L, Cao J-L (2020) Mesocortical BDNF signaling mediates antidepressive-like effects of lithium. Neuropsychopharmacology 45: 1557–1566. https://doi.org/10.1038/s41386-020-0713-0
  25. Fuster JM (2015) Prefrontal Cortex. In: Comparative Neuroscience and Neurobiology. Readings from the Encyclopedia of Neuroscience. Birkhäuser, Boston. MA. https://doi.org/10.1007/978-1-4899-6776-3_43
  26. Haber SN, Liu H, Seidlitz J, Bullmore E (2022) Prefrontal connectomics: from anatomy to human imaging. Neuropsychopharmacology 47: 20–40. https://doi.org/10.1038/s41386-021-01156-6
  27. Ongur D (2000) The Organization of Networks within the Orbital and Medial Prefrontal Cortex of Rats, Monkeys and Humans. Cerebr Cortex 10: 206–219. https://doi.org/10.1093/cercor/10.3.206
  28. Savage MA, McQuade R, Thiele A (2017) Segregated fronto-cortical and midbrain connections in the mouse and their relation to approach and avoidance orienting behaviors. J Compar Neurol 525: 1980–1999. https://doi.org/10.1002/cne.24186
  29. Menon V, D’Esposito M (2022) The role of PFC networks in cognitive control and executive function. Neuropsychopharmacology 47: 90–103. https://doi.org/10.1038/s41386-021-01152-w
  30. Preuss TM, Wise SP (2022) Evolution of Prefrontal Cortex. Neuropsychopharmacology 47: 3–19. https://doi.org/10.1038/s41386-021-01076-5
  31. Spellman T, Svei M, Kaminsky J, Manzano-Nieves G, Liston C (2021) Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring. Cell 184: 2750–2766.e17. https://doi.org/10.1016/j.cell.2021.03.047
  32. Gabbott PLA, Warner TA, Jays PRL, Salway P, Busby SJ (2005) Prefrontal cortex in the rat: Projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol 492: 145–177. https://doi.org/10.1002/cne.20738
  33. Otis JM, Namboodiri VMK, Matan AM, Voets ES, Mohorn EP, Kosyk O, McHenry JA, Robinson JE, Resendez SL, Rossi MA, Stuber GD (2017) Prefrontal cortex output circuits guide reward seeking through divergent cue encoding. Nature 543: 103–107. https://doi.org/10.1038/nature21376
  34. Power RM, Huisken J (2017) A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat Methods 14: 360–373. https://doi.org/10.1038/nmeth.4224
  35. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508: 207–214. https://doi.org/10.1038/nature13186
  36. Cyranoski D (2017) China launches brain-imaging factory. Nature 548: 268–269. https://doi.org/10.1038/548268a
  37. Jhang J, Lee H, Kang MS, Lee H-S, Park H, Han J-H (2018) Anterior cingulate cortex and its input to the basolateral amygdala control innate fear response. Nat Commun 9: 2744. https://doi.org/10.1038/s41467-018-05090-y
  38. Shipman ML, Johnson GC, Bouton ME, Green JT (2019) Chemogenetic Silencing of Prelimbic Cortex to Anterior Dorsomedial Striatum Projection Attenuates Operant Responding. eNeuro 6: ENEURO.0125–19.2019. https://doi.org/10.1523/ENEURO.0125-19.2019
  39. Murugan M, Jang HJ, Park M, Miller EM, Cox J, Taliaferro JP, Parker NF, Bhave V, Hur H, Liang Y, Nectow AR, Pillow JW, Witten IB (2017) Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex. Cell 171: 1663–1677.e16. https://doi.org/10.1016/j.cell.2017.11.002
  40. Groman SM, Keistler C, Keip AJ, Hammarlund E, DiLeone RJ, Pittenger C, Lee D, Taylor JR (2019) Orbitofrontal Circuits Control Multiple Reinforcement-Learning Processes. Neuron 103: 734–746.e3. https://doi.org/10.1016/j.neuron.2019.05.042
  41. White MG, Panicker M, Mu C, Carter AM, Roberts BM, Dharmasri PA, Mathur BN (2018) Anterior Cingulate Cortex Input to the Claustrum Is Required for Top-Down Action Control. Cell Rep 22: 84–95. https://doi.org/10.1016/j.celrep.2017.12.023
  42. Lodge DJ (2011) The Medial Prefrontal and Orbitofrontal Cortices Differentially Regulate Dopamine System Function. Neuropsychopharmacology 36: 1227–1236. https://doi.org/10.1038/npp.2011.7
  43. Carr DB, Sesack SR (2000) Projections from the Rat Prefrontal Cortex to the Ventral Tegmental Area: Target Specificity in the Synaptic Associations with Mesoaccumbens and Mesocortical Neurons. J Neurosci 20: 3864–3873. https://doi.org/10.1523/JNEUROSCI.20-10-03864.2000
  44. Vázquez-Borsetti P, Celada P, Cortés R, Artigas F (2011) Simultaneous projections from prefrontal cortex to dopaminergic and serotonergic nuclei. Int J Neuropsychopharm 14: 289–302. https://doi.org/10.1017/S1461145710000349
  45. Dembrow N, Johnston D (2014) Subcircuit-specific neuromodulation in the prefrontal cortex. Front Neural Circuits 8. https://doi.org/10.3389/fncir.2014.00054
  46. Lui JH, Nguyen ND, Grutzner SM, Darmanis S, Peixoto D, Wagner MJ, Allen WE, Kebschull JM, Richman EB, Ren J, Newsome WT, Quake SR, Luo L (2021) Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell 184: 489–506. https://doi.org/10.1016/j.cell.2020.11.046
  47. Bhattacherjee A, Djekidel MN, Chen R, Chen W, Tuesta LM, Zhang Y (2019) Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nat Commun 10: 4169. https://doi.org/10.1038/s41467-019-12054-3
  48. Binder DK, Scharfman HE (2004) Mini Review. Growth Factors 22: 123–131. https://doi.org/10.1080/08977190410001723308
  49. Park H, Poo M (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14: 7–23. https://doi.org/10.1038/nrn3379
  50. Yamada K, Nabeshima T (2003) Brain-Derived Neurotrophic Factor/TrkB Signaling in Memory Processes. J Pharmacol Sci 91: 267–270. https://doi.org/10.1254/jphs.91.267
  51. Lu Y, Christian K, Lu B (2008) BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Memory 89: 312–323. https://doi.org/10.1016/j.nlm.2007.08.018
  52. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of Brain-Derived Neurotrophic Factor (BDNF) Protein and mRNA in the Normal Adult Rat CNS: Evidence for Anterograde Axonal Transport. J Neurosci 17: 2295–2313. https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997
  53. Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389: 856–860. https://doi.org/10.1038/39885
  54. Ehinger Y, Soneja D, Phamluong K, Salvi A, Ron D (2023) Identification of Novel BDNF-Specific Corticostriatal Circuitries. eNeuro 10: ENEURO.0238–21.2023. https://doi.org/10.1523/ENEURO.0238-21.2023
  55. Haggerty DL, Munoz B, Pennington T, Viana Di Prisco G, Grecco GG, Atwood BK (2022) The role of anterior insular cortex inputs to dorsolateral striatum in binge alcohol drinking. eLife 11: e77411. https://doi.org/10.7554/eLife.77411
  56. Jeanblanc J, Logrip ML, Janak PH, Ron D (2013) BDNF – mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis. Eur J Neurosci 37: 607–612. https://doi.org/10.1111/ejn.12067
  57. Andreska T, Rauskolb S, Schukraft N, Lüningschrör P, Sasi M, Signoret-Genest J, Behringer M, Blum R, Sauer M, Tovote P, Sendtner M (2020) Induction of BDNF Expression in Layer II/III and Layer V Neurons of the Motor Cortex Is Essential for Motor Learning. J Neurosci 40: 6289–6308. https://doi.org/10.1523/JNEUROSCI.0288-20.2020
  58. Vandaele Y, Mahajan NR, Ottenheimer DJ, Richard JM, Mysore SP, Janak PH (2019) Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. eLife 8: e49536. https://doi.org/10.7554/eLife.49536
  59. Gourley SL, Zimmermann KS, Allen AG, Taylor JR (2016) The Medial Orbitofrontal Cortex Regulates Sensitivity to Outcome Value. J Neurosci 36: 4600–4613. https://doi.org/10.1523/JNEUROSCI.4253-15.2016
  60. Giannotti G, Barry SM, Siemsen BM, Peters J, McGinty JF (2018) Divergent Prelimbic Cortical Pathways Interact with BDNF to Regulate Cocaine-seeking. J Neurosci 38: 8956–8966. https://doi.org/10.1523/JNEUROSCI.1332-18.2018
  61. Berglind WJ, Whitfield TW, LaLumiere RT, Kalivas PW, McGinty JF (2009) A Single Intra-PFC Infusion of BDNF Prevents Cocaine-Induced Alterations in Extracellular Glutamate within the Nucleus Accumbens. J Neurosci 29: 3715–3719. https://doi.org/10.1523/JNEUROSCI.5457-08.2009
  62. Cunha (2010) A simple role for BDNF in learning and memory? Front Mol Neurosci 3: 1. https://doi.org/10.3389/neuro.02.001.2010
  63. Ruiz CR, Shi J, Meffert MK (2014) Transcript specificity in BDNF-regulated protein synthesis. Neuropharmacology 76 Pt C: 657–663. https://doi.org/10.1016/j.neuropharm.2013.05.004
  64. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C (2012) Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30: 453–459. https://doi.org/10.1038/nbt.2158
  65. Bogacheva PO, Molchanova AI, Pravdivceva ES, Miteva AS, Balezina OP, Gaydukov AE (2022) ProBDNF and Brain-Derived Neurotrophic Factor Prodomain Differently Modulate Acetylcholine Release in Regenerating and Mature Mouse Motor Synapses. Front Cell Neurosci 16: 866802. https://doi.org/10.3389/fncel.2022.866802
  66. Panja D, Kenney JW, D’Andrea L, Zalfa F, Vedeler A, Wibrand K, Fukunaga R, Bagni C, Proud CG, Bramham CR (2014) Two-Stage Translational Control of Dentate Gyrus LTP Consolidation Is Mediated by Sustained BDNF-TrkB Signaling to MNK. Cell Rep 9: 1430–1445. https://doi.org/10.1016/j.celrep.2014.10.016
  67. Moy JK, Khoutorsky A, Asiedu MN, Dussor G, Price TJ (2018) eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons. Front Cell Neurosci 12: 29. https://doi.org/10.3389/fncel.2018.00029
  68. Baj G, Leone E, Chao MV, Tongiorgi E (2011) Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments. Proc Natl Acad Sci U S A 108: 16813–16818. https://doi.org/10.1073/pnas.1014168108
  69. O’Neill KM, Donohue KE, Omelchenko A, Firestein BL (2018) The 3′ UTRs of Brain-Derived Neurotrophic Factor Transcripts Differentially Regulate the Dendritic Arbor. Front Cell Neurosci 12: 60. https://doi.org/10.3389/fncel.2018.00060
  70. Modarresi F, Pedram Fatemi R, Razavipour SF, Ricciardi N, Makhmutova M, Khoury N, Magistri M, Volmar C-H, Wahlestedt C, Faghihi MA (2021) A novel knockout mouse model of the noncoding antisense Brain-Derived Neurotrophic Factor (Bdnf) gene displays increased endogenous Bdnf protein and improved memory function following exercise. Heliyon 7: e07570. https://doi.org/10.1016/j.heliyon.2021.e07570
  71. Bohnsack JP, Teppen T, Kyzar EJ, Dzitoyeva S, Pandey SC (2019) The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatr 9: 34. https://doi.org/10.1038/s41398-019-0367-z
  72. Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA (2015) DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A 112: 6807–6813. https://doi.org/10.1073/pnas.1408355111
  73. Ju L-S, Yang J-J, Lei L, Xia J-Y, Luo D, Ji M-H, Martynyuk AE, Yang J-J (2017) The Combination of Long-term Ketamine and Extinction Training Contributes to Fear Erasure by Bdnf Methylation. Front Cell Neurosci 11: 100. https://doi.org/10.3389/fncel.2017.00100
  74. Blaze J, Roth TL (2017) Caregiver maltreatment causes altered neuronal DNA methylation in female rodents. Dev Psychopathol 29: 477–489. https://doi.org/10.1017/S0954579417000128
  75. Wearick-Silva LE, Orso R, Martins LA, Creutzberg KC, Centeno-Silva A, Xavier LL, Grassi-Oliveira R, Mestriner RG (2019) Dual influences of early life stress induced by limited bedding on walking adaptability and Bdnf/TrkB and Drd1/Drd2 gene expression in different mouse brain regions. Behav Brain Res 359: 66–72. https://doi.org/10.1016/j.bbr.2018.10.025
  76. Xu H, Wang J, Zhang K, Zhao M, Ellenbroek B, Shao F, Wang W (2018) Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology 88: 92–101. https://doi.org/10.1016/j.psyneuen.2017.11.013
  77. Xu H, Wang J, Jing H, Ellenbroek B, Shao F, Wang W (2021) mPFC GABAergic transmission mediated the role of BDNF signaling in cognitive impairment but not anxiety induced by adolescent social stress. Neuropharmacology 184: 108412. https://doi.org/10.1016/j.neuropharm.2020.108412
  78. Mizui T, Ishikawa Y, Kumanogoh H, Lume M, Matsumoto T, Hara T, Yamawaki S, Takahashi M, Shiosaka S, Itami C, Uegaki K, Saarma M, Kojima M (2015) BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci U S A 112. https://doi.org/10.1073/pnas.1422336112
  79. Mizui T, Ishikawa Y, Kumanogoh H, Kojima M (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling. Pharmacol Res 105: 93–98. https://doi.org/10.1016/j.phrs.2015.12.019
  80. Camuso S, La Rosa P, Fiorenza MT, Canterini S (2022) Pleiotropic effects of BDNF on the cerebellum and hippocampus: Implications for neurodevelopmental disorders. Neurobiol Dis 163: 105606. https://doi.org/10.1016/j.nbd.2021.105606
  81. Lanshakov DA, Sukhareva EV, Bulygina VV, Bannova AV, Shaburova EV, Kalinina TS (2021) Single neonatal dexamethasone administration has long-lasting outcome on depressive-like behaviour, Bdnf, Nt-3, p75ngfr and sorting receptors (SorCS1–3) stress reactive expression. Sci Rep 11: 8092. https://doi.org/10.1038/s41598-021-87652-7
  82. Menshanov PN, Lanshakov DA, Dygalo NN (2015) proBDNF Is a Major Product of bdnf Gene Expressed in the Perinatal Rat Cortex. Physiol Res 64(6): 925–934. https://doi.org/10.33549/physiolres.932996
  83. Bird CW, Baculis BC, Mayfield JJ, Chavez GJ, Ontiveros T, Paine DJ, Marks AJ, Gonzales AL, Ron D, Valenzuela CF (2019) The brain-derived neurotrophic factor VAL68MET polymorphism modulates how developmental ethanol exposure impacts the hippocampus. Genes Brain Behav 18: e12484. https://doi.org/10.1111/gbb.12484
  84. Nees F, Witt SH, Dinu-Biringer R, Lourdusamy A, Tzschoppe J, Vollstädt-Klein S, Millenet S, Bach C, Poustka L, Banaschewski T, Barker GJ, Bokde ALW, Bromberg U, Büchel C, Conrod PJ, Frank J, Frouin V, Gallinat J, Garavan H, Gowland P, Heinz A, Ittermann B, Mann K, Martinot J-L, Paus T, Pausova Z, Robbins TW, Smolka MN, Rietschel M, Schumann G, Flor H (2015) BDNF Val66Met and reward-related brain function in adolescents: role for early alcohol consumption. Alcohol 49(2): 103–110. https://doi.org/10.1016/j.alcohol.2014.12.004
  85. Muschler MAN, Heberlein A, Frieling H, Vogel N, Becker C–M, Kornhuber J, Bleich S, Hillemacher T (2011) Brain-derived neurotrophic factor, Val66Met single nucleotide polymorphism is not associated with alcohol dependence. Psychiat Genet 21: 53–54. https://doi.org/10.1097/YPG.0b013e32834133ab
  86. Gao L, Zhang Y, Sterling K, Song W (2022) Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl Neurodegener 11: 4. https://doi.org/10.1186/s40035-022-00279-0
  87. Katsu-Jiménez Y, Loría F, Corona JC, Díaz-Nido J (2016) Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency. Mol Therap 24: 877–889. https://doi.org/10.1038/mt.2016.32
  88. Xia M, Zhao T, Wang X, Li Y, Li Y, Zheng T, Li J, Feng Y, Wei Y, Sun P (2021) Brain-derived Neurotrophic Factor and Its Applications through Nanosystem Delivery. Iran J Pharm 20(4): 137–151. https://doi.org/10.22037/ijpr.2021.115705.15484
  89. Lopes CDF, Gonçalves NP, Gomes CP, Saraiva MJ, Pego AP (2017) BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials 121: 83–96. https://doi.org/10.1016/j.biomaterials.2016.12.025
  90. Falcicchia C, Paolone G, Emerich DF, Lovisari F, Bell WJ, Fradet T, Wahlberg LU, Simonato M (2018) Seizure-Suppressant and Neuroprotective Effects of Encapsulated BDNF-Producing Cells in a Rat Model of Temporal Lobe Epilepsy. Mol Therap – Methods Clin Develop 9: 211–224. https://doi.org/10.1016/j.omtm.2018.03.001
  91. Yang S, Zhu G (2022) 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 20(8): 1479–1497. https://doi.org/10.2174/1570159X19666210915122820
  92. Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Ferreira CB, Rei N, Ferreira-Manso M, De Almeida-Borlido C, Costa-Coelho T, Freitas CF, Zavalko S, Mouro FM, Sebastião AM, Xapelli S, Rodrigues TM, Diógenes MJ (2020) Challenges of BDNF-based therapies: From common to rare diseases. Pharmacol Res 162: 105281. https://doi.org/10.1016/j.phrs.2020.105281
  93. Yaar M, Arble BL, Stewart KB, Qureshi NH, Kowall NW, Gilchrest BA (2008) p75NTR Antagonistic Cyclic Peptide Decreases the Size of β Amyloid-Induced Brain Inflammation. Cell Mol Neurobiol 28: 1027–1031. https://doi.org/10.1007/s10571-008-9298-6
  94. Yang T, Tran KC, Zeng AY, Massa SM, Longo FM (2020) Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Sci Rep 10: 20322. https://doi.org/10.1038/s41598-020-77210-y
  95. Mossa AH, Galan A, Cammisotto PG, Velasquez Flores M, Shamout S, Barcelona P, Saragovi HU, Campeau L (2020) Antagonism of proNGF or its receptor p75NTR reverses remodelling and improves bladder function in a mouse model of diabetic voiding dysfunction. Diabetologia 63: 1932–1946. https://doi.org/10.1007/s00125-020-05222-4
  96. Allen Reference Atlas – Human Brain [brain atlas]. Available from atlas.brain-map.org.
  97. Allen Reference Atlas – Mouse Brain [brain atlas]. Available from atlas.brain-map.org.
  98. Allen Institute for Brain Science (2004). Allen Mouse Brain Atlas [dataset]. Available from mouse.brain-map.org.Allen Institute for Brain Science (2011).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anatomy of the prefrontal cortex (PFC) in primates and rodents. (a) Human brain, medial view, color indicates Brodmann areas included in the PFC, line indicates approximate section level in Fig. 1b (preparation from the Anatomical Museum of the Faculty of Natural Sciences of Novosibirsk State University); (b) Frontal section of human brain (Allen Reference Atlas – Human Brain, atlas.brain-map.org [96]) and anatomical diagram of the names of the regions and Brodmann areas included in the PFC; (c) Coronal section of mouse brain: Nissl staining and subdivision of the PFC into main anatomical zones (Allen Reference Atlas – Mouse Brain, atlas.brain-map.org [97]).

Download (590KB)
3. Fig. 2. Schematic diagram showing the production of a three-dimensional computer model of the branching of single neurons using fluorescence micro-optical sectional tomography (fMOST). PMT – photomultiplier detection tube.

Download (326KB)
4. Fig. 3. Projection neurons of the prefrontal cortex. (a) Nissl staining and subdivision of the PFC into major anatomical regions (Allen Reference Atlas – Mouse Brain, atlas.brain-map.org [97]); (b) locations of PFC projection neurons according to Gao et al. [16] (https://mouse.braindatacenter.cn/). The size of the circles is proportional to the number of neurons of each subtype within an anatomical region; (c) some types of projection neurons are shown. Visible are the collaterals of IT neurons type 10 (marked with arrows and number 1), the subcortical collateral of IT neuron type 16 (marked with arrow and number 2), and the cortical collateral of PT neuron type 64 (marked with arrow and number 3). Individual neurons are indicated by different colors [16], (https://mouse.braindatacenter.cn/).

Download (1MB)
5. Fig. 4. Schematic representation of the principles of single-cell transcriptomics. The tissue is broken into cells and then combined with barcoded beads in a microfluidic chip into an immiscible emulsion. Reverse transcription is performed by a matrix switching mechanism to incorporate specified sequences at the ends. This is followed by massively parallel NGS sequencing, computer processing, and clustering.

Download (370KB)
6. Fig. 5. Expression of major marker genes. (a) – expression of major marker genes in PFC based on single-cell transcriptomics data (in situ hybridization data from the Allen Mouse Brain Atlas, mouse.brain-map.org [98]); (b) – some types of projection neurons and markers that are expressed predominantly in them are shown. Individual neurons are indicated by different colors. According to Gao et al. [16].

Download (989KB)
7. Fig. 6. PFC projection neurons expressing the brain-derived neurotrophic factor Bdnf. (a) Bdnf expression in PFC. In situ hybridization data from the Allen Mouse Brain Atlas, mouse.brain-map.org [98] are shown. (b) A reporter construct was introduced by Ehinger et al. into mouse Bdnfcre as adeno-associated viruses with a capsid that transduces neurons retrogradely (retrograde tracers) into different areas of the striatum. (c) BDNF-expressing PFC neurons projecting to different areas of the striatum, identified by introducing retrograde tracers into the dorsomedial (DMS) and dorsolateral (DLS) striatum [54].

Download (623KB)
8. Fig. 7. Regulation of Bdnf expression. (a) – diagram of the human locus in which Bdnf and Bdnf-as are located [64]. (b) – there are a large number of splice variants of Bdnf mRNA [68], which can be located in different compartments of the neuron and provide different local protein synthesis. (c) – antisense RNA (lncRNA) Bdnf-as binds to the polycomb protein EZH2 and causes histone methylation and transcriptional repression [71]. (d) – BDNF protein synthesis occurs differently, depending on the phase of synaptic potentiation (LTP), which is controlled by MNK kinase [66].

Download (445KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».