Influence of Interval Hypoxic Training in Different Regimes on the Blood Parameters of Rats

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The development of ways to increase the adaptive reserves of the body and resistance to negative factors continues to be an urgent problem for physiology, which has a significant translational potential in the fields of healthcare, sports, cosmonautics and the national economy. Long-term authors studies have proved the promise in this respect of hypoxic hypobaric conditioning in a pressure chamber. In the present study, the principles of hypobaric conditioning were transferred to the model of normobaric intermittent hypoxia/normoxia caused by the inhalation of gas mixtures, which is widely used in practice for human interval hypoxic training. A comparative experimental analysis of molecular and cellular changes in the blood of rats in response to three-day interval hypoxic training at 9, 12, or 16% O2 in the mixture was carried out using an automated setup. It was shown that the most intense and effective 3 × 9% O2 regimen, in terms of duration and amplitude, had the greatest effect on the parameters of the clinical blood test of rats, initiating an increase in the number of erythrocytes and a decrease in the variability of their volumes, and causing a shift in the balance of lymphokine and monokine effects towards a calm activation reaction. On the first day after training at 9 and 12% oxygen, the total antioxidant capacity of serum significantly decreased, followed by rapid normalization, which fits into the dynamics of the reaction of pro- and antioxidant systems to non-damaging hypoxia. The stimulating effect of all the studied regimens of interval training on the basal and stress activity of the hypothalamic-pituitary-adrenocortical system, characteristic of conditioning, was revealed. All detected post-training changes can be attributed to the basic adaptive mechanisms that increase resistance to adverse factors.

Full Text

Restricted Access

About the authors

K. A. Baranova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: rybnikovaea@infran.ru
Russian Federation, St. Petersburg

M. Y. Zenko

Pavlov Institute of Physiology of the Russian Academy of Sciences

Email: rybnikovaea@infran.ru
Russian Federation, St. Petersburg

E. A. Rybnikova

Pavlov Institute of Physiology of the Russian Academy of Sciences

Author for correspondence.
Email: rybnikovaea@infran.ru
Russian Federation, St. Petersburg

References

  1. Колчинская АЗ, Остапенко ЛА, Цыганова ТН (2003). Нормобарическая интервальная гипоксическая тренировка в медицине и спорте: Руководство для врачей. М. Медицина. [Kolchinskaia AZ, Ostapenko LA, Tсyganova TN (2003) Normobaric interval hypoxic training in medicine and sports: A guide for physicians. M. Meditcina. (In Russ)].
  2. Караш ЮМ, Стрелков РБ, Чижов АЯ (1988). Нормобарическая гипоксия в лечении, профилактике и реабилитации. М. Медицина. [Karash YM, Strelkov RB, Chizhov AY (1988) Normobaric hypoxia in treatment, prevention and rehabilitation. M. Meditcina. (In Russ)].
  3. Samoilov MO, Rybnikova EA (2013) Molecular-cellular and hormonal mechanisms of induced tolerance of the brain to extreme environmental factors. Neurosci Behav Physi 43: 827–837. https://doi.org/10.1007/s11055-013-9813-1
  4. Rybnikova E, Samoilov M (2015) Current insights into the molecular mechanisms of hypoxic pre- and postconditioning using hypobaric hypoxia. Front Neurosci 9: 388. https://doi.org/10.3389/fnins.2015.00388
  5. Бондаренко НН, Хомутов ЕВ, Ряполова ТЛ, Кишеня МС, Игнатенко ТС, Толстой ВА, Евтушенко ИС, Туманова СВ (2023). Молекулярно-клеточные механизмы ответа организма на гипоксию. Ульяновск мед.-биол. журн. 2: 6–29. [Bondarenko NN, Homutov EV, Riapolova TL, Kishenia MS, Ignatenko TS, Tolstoi` VA, Evtushenko IS, Tumanova SV (2023) Molecular and cellular mechanisms of the body’s response to hypoxia. Ul`ianovsk med-biol zhurn 2: 6–29. (In Russ)]. https://doi.org/10.34014/2227-1848-2023-2-6-29
  6. Hamlin MJ, Marshall HC, Hellemans J, Ainslie PN, Anglem N (2010) Effect of intermittent hypoxic training on 20 km time trial and 30 s anaerobic performance. Scand J Med Sci Sports 20(4): 651–661. https://doi.org/10.1111/j.1600-0838.2009.00946.x
  7. Teległów A, Mardyła M, Myszka M, Pałka T, Maciejczyk M, Bujas P, Mucha D, Ptaszek B, Marchewka J (2022) Effect of Intermittent Hypoxic Training on Selected Biochemical Indicators, Blood Rheological Properties, and Metabolic Activity of Erythrocytes in Rowers. Biology 11(10): 1513. https://doi.org/10.3390/biology11101513
  8. Park HY, Jung WS, Kim SW, Kim J, Lim K (2022) Effects of Interval Training Under Hypoxia on Hematological Parameters, Hemodynamic Function, and Endurance Exercise Performance in Amateur Female Runners in Korea. Front Physiol 13: 919008. https://doi.org/10.3389/fphys.2022.919008
  9. Иванов ДГ, Александровская НВ, Афонькина ЕА, Ерошкин ПВ, Семенов АН, Бусыгин ДВ (2017). Адаптационные изменения у крыс при ежедневном выполнении физической нагрузки в методике “Бег на тредбане”. Биомедицина 2: 4–22. [Ivanov DG, Alexanderovskaia NV, Afon`kina EA, Eroshkin PV, Semenov AN, Busygin DV (2017) Adaptive changes in rats during daily exercise in the “Treadmill Running” technique. Biomeditcina 2: 4–22 (In Russ)].
  10. Иванов ДО, Шабалов НП, Шабалова НН, Курзина ЕА, Костючек ИН (2002). Лейкоцитарные индексы клеточной реактивности как показатель наличия гипо- и гиперэргического вариантов неонатального сепсиса. Электронный ресурс MedLinks. Ru Педиатрия и неонатология [Ivanov DO, Shabalov NP, Shabalova NN, Kurzina EA, Kostjuchek IN (2002) Leukocyte indices of cellular reactivity as an indicator of the presence of hypo- and hyperergic variants of neonatal sepsis. (In Russ)].
  11. Гаркави ЛХ, Квакина ЕБ, Уколова МА (1990). Адаптационные реакции и резистентность организма. Ростов н/Д. Изд-во Рост. ун-та. [Garkavi LH, Kvakina EB, Ukolova MA (1990) Adaptive reactions and resistance of the body. Rostov n/D. Izd-vo Rost. univer. (In Russ)].
  12. Kiers D, Wielockx B, Peters E, van Eijk LT, Gerretsen J, John A, Janssen E, Groeneveld R, Peters M, Damen L, Meneses AM, Krüger A, Langereis JD, Zomer AL, Blackburn MR, Joosten LA, Netea MG, Riksen NP, van der Hoeven JG, Scheffer GJ, Eltzschig HK, Pickkers P, Kox M (2018) Short-Term Hypoxia Dampens Inflammation in vivo via Enhanced Adenosine Release and Adenosine 2B Receptor Stimulation. EBioMedicine 33: 144–156. https://doi.org/10.1016/j.ebiom.2018.06.021
  13. Serebrovska ZO, Xi L, Tumanovska LV, Shysh AM, Goncharov SV, Khetsuriani M, Kozak TO, Pashevin DA, Dosenko VE, Virko SV, Kholin VA, Grib ON, Utko NA, Egorov E, Polischuk AO, Serebrovska TV (2022) Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life (Basel) 12(3): 432. https://doi.org/10.3390/life12030432
  14. Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40(1): 1–25. https://doi.org/10.2165/11317920-000000000-00000
  15. Dringen R, Brandmann M, Hohnholt MC, Blumrich EM (2015) Glutathione-Dependent Detoxification Processes in Astrocytes. Neurochem Res 40(12): 2570–2582. https://doi.org/10.1007/s11064-014-1481-1
  16. Sazontova TG, Bolotova AV, Kostin NV (2011) Hypoxia-inducible factor (HIF-1α), HSPs, antioxidant enzymes and membrane resistance to ROS in endurance exercise performance after adaptive hypoxic preconditioning. Adaptat Biol Med 6: 161–179.
  17. Rybnikova EA, Mironova VI, Pivina SG, Ordyan NE, Tulkova EI, Samoilov MO (2008) Hormonal mechanisms of neuroprotective effects of the mild hypoxic preconditioning in rats. Dokl Biol Sci 421: 239–240. https://doi.org/10.1134/s0012496608040054

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. The effect of IHT in various modes on the parameters of the general blood test of rats 24 hours after the end of training. (a) - total white blood cell count (WBC), 10⁹ cells/l; (b) - lymphocyte count, 10⁹/l; (c) - number of monocytes, 10⁹/l; (d) - red blood cell count (RBC), 1012/l; (e) - hemoglobin concentration, g/l; (f) – standard deviation of erythrocyte distribution width (RDW-SD), femtoliters. (g) - examples of histograms of distribution of red blood cells (RBC) by size, fl. Control – control intact animals; 3 × 9% O₂, 3 × 12% O₂, and 3 × 16% O₂—groups of rats exposed to IHT at 9, 12, or 16% oxygen levels, respectively.

Download (538KB)
3. Fig.2. Dynamics of changes in the cellular formula of the blood on the 1st, 3rd and 6th day after IHT in the mode of 3 × 9% O₂ (a-g) and the total antioxidant capacity of serum after IHT at 9, 12 and 16% oxygen (f). (a) ‒ total white blood cell count (WBC), 10⁹ cells/L. (b) - the proportion of lymphocytes from the total number of leukocytes, %. (c) – relative percentage of monocytes, %. (d) - red blood cell count (RBC), 10¹²/l. (e) – hemoglobin concentration, g/l. (f) – coefficient of variation of erythrocyte distribution width (RDW-CV), %. (g) – histograms of erythrocyte distribution, fl. (h) - total antioxidant capacity (T-AOC) of blood serum in Trolox equivalent, mmol/l. Designations: White bars - Control, control group that did not undergo IHT; gray - 3 × 9% O₂, IHT group at an oxygen level of 9%; hatched - 3 × 12% O₂, rats trained at 12% oxygenation; black - 3 × 16% O₂, the oxygen content in the mixture for IHT animals was 16%.

Download (473KB)
4. Fig.3. Effect of IHT on basal (a) and stress (b) levels of corticosterone in blood serum. The x-axis is days after the last IHT session (a) or minutes from the onset of procedural stress (b); the ordinate is the serum corticosterone content, nmol/l. Other designations are as in Fig. 2.

Download (203KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies