Expression of Apoptosis and Autophagy Genes in HeLa and HEK 293 Cells under Conditions of Nutrient Deprivation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The goal of the study was a comparing the degree of development of autophagy in the human cervical carcinoma cells of HeLa-V and HeLa-R sublines and non-tumor human embryonic kidney cells HEK 293 under two types of starvation conditions – 24- and 48-h culture in serum-free DMEM medium and 4-h incubation in Earle’s minimal medium. The work assessed cell viability using MTT method and the expression of apoptosis (BCL2, BAX, CASP3) and autophagy (ULK1, BECN1, ATG5, ATG14, MAP1LC3B) genes using real-time PCR. Cultivation under serum starvation and Earl’s medium resulted in a significant decrease in the viability of HEK 293 cells, but had no influence on HeLa-V and HeLa-R cells. In the tumor cells of both lines, the expression of anti-apoptotic gene BCL2 increased, while in HEK 293 cells the BCL2/BAX ratio decreased and CASP3 gene was activated. In HeLa-V and HeLa-R cells, nutrient deprivation induced the stimulation of various combinations of genes ULK1, BECN1, ATG5 and ATG14 implicated in the initial stages of autophagy, but none of the treatments affected the expression of MAP1LC3B gene. In HEK 293 cells, serum starvation led to increase in expression level of BECN1, ATG5, ATG14 and MAP1LC3B genes. Thus, stimulation of autophagy in HeLa cells, especially HeLa-R, prevents the development of apoptotic processes, while in HEK 293 cells the processes of apoptosis and autophagy occur in parallel. Culture in the serum-free DMEM for 48 h appears to be most effective way to induce autophagy in tumor cell lines and, accordingly, the most suitable model for studying the role of autophagy in the development of their resistance to apoptotic pathway of death.

Sobre autores

A. Trubnikova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagalak@mail.ru
Russia, Saint-Petersburg

E. Prokopenko

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagalak@mail.ru
Russia, Saint-Petersburg

T. Sokolova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagalak@mail.ru
Russia, Saint-Petersburg

O. Nadei

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagalak@mail.ru
Russia, Saint-Petersburg

N. Agalakova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: nagalak@mail.ru
Russia, Saint-Petersburg

Bibliografia

  1. Chern YJ, Tai IT (2020) Adaptive response of resistant cancer cells to chemotherapy. Cancer -Biol Med 17(4): 842–863. https://doi.org/10.20892/j.issn.2095-3941.2020.0005
  2. Noguchi M, Hirata N, Tanaka T, Suizu F, Nakajima H, Chiorini JA (2020) Autophagy as a modulator of cell death machinery. Cell Death Dis 11: 517. https://doi.org/10.1038/s41419-020-2724-5
  3. Thorburn A (2018) Autophagy and disease. J Biol Chem 293(15): 5425–5430. https://doi.org/10.1074/jbc.R117.810739
  4. Goldsmith J, Levine B, Debnath J (2014) Autophagy and cancer metabolism. Methods Enzymol 542: 25–57. https://doi.org/10.1016/B978-0-12-416618-9.00002-9
  5. Zhang T, Yu J, Cheng S, Zhang Y, Zhou CH, Qin J, Luo H (2023) Research Progress on the Anticancer Molecular Mechanism of Targets Regulating Cell Autophagy. Pharmacology 108(3): 224–237. https://doi.org/10.1159/000529279
  6. Rahman MA, Saikat AS, Rahman MS, Islam M, Parvez MA, Kim B (2023) Recent Update and Drug Target in Molecular and Pharmacological Insights into Autophagy Modulation in Cancer Treatment and Future Progress. Cells 12(3): 458. https://doi.org/10.3390/cells12030458
  7. Su M, Mei Y, Sinha S (2013) Role of the Crosstalk between Autophagy and Apoptosis in Cancer. J Oncol 2013: 102735. https://doi.org/10.1155/2013/102735
  8. King KE, Losier TT, Russell RC (2021) Regulation of Autophagy Enzymes by Nutrient Signaling. Trends Biochem Sci 46(8): 687–700. https://doi.org/10.1016/j.tibs.2021.01.006
  9. Kong EY, Cheng SH, Yu KN (2018) Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? J Radiat Res 59(2): 129–140. https://doi.org/10.1093/jrr/rrx101
  10. Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky AM (2005) The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy 1(1): 23–36. https://doi.org/10.4161/auto.1.1.1495
  11. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16(7): 1040–1052. https://doi.org/10.1038/cdd.2009.49
  12. Racz GA, Nagy N, Tovari J, Apati A, Vertessy BG (2021) Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines. Sci Rep 11: 19459. https://doi.org/10.1038/s41598-021-98869-x
  13. Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3(3): 71–85.
  14. Eichhorn JM, Alford SE, Sakurikar N, Chambers TC (2014) Molecular analysis of functional redundancy among anti-apoptotic Bcl-2 proteins and its role in cancer cell survival. Exp Cell Res. 322: 415–424. https://doi.org/10.1016/j.yexcr.2014.02.010
  15. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 20: 175–193. https://doi.org/10.1038/s41580-018-0089-8
  16. Dixit VM (2023) The road to death: Caspases, cleavage, and pores. Sci Adv 9(17): eadi2011. https://doi.org/10.1126/sciadv.adi2011
  17. Sahoo G, Samal D, Khandayataray P, Murthy MK (2023) A Review on Caspases: Key Regulators of Biological Activities and Apoptosis. Mol Neurobiol 60(10): 5805–5837. https://doi.org/10.1007/s12035-023-03433-5
  18. Lamark T, Johansen T (2021) Mechanisms of Selective Autophagy. Annu Rev Cell Dev Biol 37: 143–169. https://doi.org/10.1146/annurev-cellbio-120219-035530
  19. Majeed ST, Majeed R, Andrabi KI (2022) Expanding the view of the molecular mechanisms of autophagy pathway. J Cell Physiol 237(8): 3257–3277. https://doi.org/10.1002/jcp.30819
  20. Rong Z, Zheng K, Chen J, Jin X (2022) Function and regulation of ULK1: From physiology to pathology. Gene 840: 146772. https://doi.org/10.1016/j.gene.2022.146772
  21. Vega-Rubín-de-Celis S (2019) The Role of Beclin 1-Dependent Autophagy in Cancer. Biology 9(1): 4. https://doi.org/10.3390/biology9010004
  22. Prerna K, Dubey VK (2022) Beclin1-mediated interplay between autophagy and apoptosis: New understanding. Int J Biol Macromol 204: 258–273. https://doi.org/10.1016/j.ijbiomac.2022.02.005
  23. Menon MB, Dhamija S (2018) Beclin 1 Phosphorylation – at the Center of Autophagy Regulation. Front Cell Dev Biol 6: 137. https://doi.org/10.3389/fcell.2018.00137
  24. Ohashi Y (2021) Activation Mechanisms of the VPS34 Complexes. Cells 10(11): 3124. https://doi.org/10.3390/cells10113124
  25. Zhou P, Zhang Z, Liu M, Li P, Zhu Y (2023) Effects of autophagy‑related gene 5 on tumor development and treatment (Review). Oncol Rep 50(2): 155. https://doi.org/10.3892/or.2023.8592
  26. Changotra H, Kaur S, Yadav SS, Gupta GL, Parkash J, Duseja A (2022) ATG5: A central autophagy regulator implicated in various human diseases. Cell Biochem Funct 40(7): 650–667. https://doi.org/10.1002/cbf.3740
  27. Chen KD, Lin CC, Tsai MC, Huang KT, Chiu KW (2018) Tumor microenvironment mediated by suppression of autophagic flux drives liver malignancy. Biomed J 41(3): 163–168. https://doi.org/10.1016/j.bj.2018.03.002
  28. Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36(12): 2503–2518. https://doi.org/10.1016/j.biocel.2004.05.009

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (171KB)
3.

Baixar (285KB)
4.

Baixar (173KB)
5.

Baixar (315KB)
6.

Baixar (291KB)
7.

Baixar (124KB)

Declaração de direitos autorais © А.Д. Трубникова, Е.С. Прокопенко, Т.В. Соколова, О.В. Надей, Н.И. Агалакова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».