Effets of Antihistamines in Adult Zebrafish in Novel Tank Test

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Histamine receptors play pivotal roles in various physiological functions, ranging from allergic responses to memory and sleep regulation, making them important drug targets. While second-generation antihistamines have been successfully used in rodents and humans, investigating their effects in non-traditional animal models enhances our understanding and aids the development of novel drug candidates. In this study, we examined the impact of the first-generation drug chloropyramine and the second-generation drugs loratadine and cetirizine, at concentrations of 1, 5, and 10 mg/L, on adult zebrafish b-ehavior using the novel tank test. All three drugs significantly altered fish locomotor a-ctivity, decreasing distance traveled and average velocity while increasing low acceleration frequency. Chloropyramine at 5 and 10 mg/L and loratadine at 1, 5, and 10 mg/L significantly reduced top entries compared to the control. Additionally, 5 mg/L chloropyramine increased the total duration of top entries, whereas loratadine at 10 mg/L r-educed this behavior compared to controls. Overall, chloropyramine and loratadine e-xhibited a sedative effect typical of antihistamines, while cetirizine solely reduced locomotor activity without affecting other patterns of fish behavior. Thus, cetirizine demonstrated the least impact on the central nervous system among the studied drugs, making it the optimal and safest choice among antihistamines.

About the authors

А. V. Zhdanov

South Ural State University; Ural Federal University

Author for correspondence.
Email: sanya.zhdanov.1996@mail.ru
Russia, Chelyabinsk; Russia, Ekaterinburg

M. V. Komelkova

South Ural State University

Email: sanya.zhdanov.1996@mail.ru
Russia, Chelyabinsk

М. А. Gorbunova

Ural Federal University

Email: sanya.zhdanov.1996@mail.ru
Russia, Ekaterinburg

S. L. Khatsko

Ural Federal Agrarian Research Center UBRAS; Ural Federal University

Email: sanya.zhdanov.1996@mail.ru
Russia, Ekaterinburg; Russia, Ekaterinburg

А. P. Sarapultsev

South Ural State University

Email: sanya.zhdanov.1996@mail.ru
Russia, Chelyabinsk

А. V. Kalueff

Ural Federal University; St. Petersburg State University; Almazov National Medical Research Center; Granov Russian Scientific Center for Radiology and Surgical Technology; Sirius University of Science and Technology

Email: sanya.zhdanov.1996@mail.ru
Russia, Ekaterinburg; Russia, St. Petersburg; Russia, St. Petersburg; Russia, St. Petersburg; Russia, Sochi

References

  1. Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Progress Neurobiol 63: 637–672. https://doi.org/10.1016/S0301-0082(00)00039-3
  2. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nature Rev Neurosci 4: 121–130. https://doi.org/10.1038/nrn1034
  3. Panula P (2021) Histamine receptors, agonists, and antagonists in health and disease. Handbook Clin Neurol 180: 377–387. https://doi.org/10.1016/B978-0-12-820107-7.00023-9
  4. Schwartz JC (1991) Histaminergic transmission in the mammalian brain. Physiol Rev 71: 1–51. https://doi.org/10.1152/physrev.1991.71.1.1
  5. Siegel GJ, Albers RW (1994) Basic neurochemistry: molecular, cellular, and medical aspects. Raven Press.
  6. Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new antihistamines. Nature Rev Drug Discov 7: 41–53. https://doi.org/10.1038/nrd2465
  7. Akdis CA, Blaser K (2003) Histamine in the immune regulation of allergic inflammation. J Allergy Clin Immunol 112: 15–22. https://doi.org/10.1067/mai.2003.1585
  8. Leurs R (2011) En route to new blockbuster anti-histamines: surveying the offspring of the expanding histamine receptor family. Trends Pharmacol Sci 32: 250–257. https://doi.org/10.1016/j.tips.2011.02.004
  9. Tiligada E (2009) Histamine H3 and H4 receptors as novel drug targets. Expert Opin Invest Drugs 18: 1519–1531. https://doi.org/10.1517/14728220903188438
  10. Golightly LK, Greos LS (2005) Second-generation antihistamines: actions and efficacy in the management of allergic disorders. Drugs 65: 341–384. https://doi.org/10.2165/00003495-200565030-00004
  11. Liu C (2001) Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol Pharmacol 59: 420–426. https://doi.org/10.1124/mol.59.3.420
  12. Emanuel M (1999) Histamine and the antiallergic antihistamines: a history of their discoveries. Clin Exp Allergy 29: 1–11. https://doi.org/10.1046/j.1365-2222.1999.00004.x-i1
  13. Simons FER, Simons KJ (2011) Histamine and H1-antihistamines: celebrating a century of progress. J Allergy Clin Immunol 128: 1139–1150. https://doi.org/10.1016/j.jaci.2011.09.005
  14. Okamura N (2000) Functional neuroimaging of cognition impaired by a classical antihistamine, d-chlorpheniramine. Br J Pharmacol 129: 115. https://doi.org/10.1038/sj.bjp.0702994
  15. Yanai K (2017) The clinical pharmacology of non-sedating antihistamines. Pharmacol Therap 178: 148–156. https://doi.org/10.1016/j.pharmthera.2017.04.004
  16. Taglialatela M, Timmerman H, Annunziato L (2000) Cardiotoxic potential and CNS effects of first-generation antihistamines. Trends Pharmacol Sci 21: 52–56. https://doi.org/10.1016/s0165-6147(99)01437-6
  17. Peitsaro N (2003) Modulation of the histaminergic system and behaviour by α-fluoromethylhistidine in zebrafish. J Neurochem 86: 432–441. https://doi.org/10.1046/j.1471-4159.2003.01850.x
  18. Leung LC (2019) Neural signatures of sleep in zebrafish. Nature 571: 198–204. https://doi.org/10.1038/s41586-019-1336-7
  19. Rosa JGS, Lima C, Lopes-Ferreira M (2022) Zebrafish larvae behavior models as a tool for drug screenings and pre-clinical trials: a review. Int J Mol Sci 23: 6647. https://doi.org/10.3390/ijms23126647
  20. Peitsaro N (2007) Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol 73: 1205–1214. https://doi.org/10.1016/j.bcp.2007.01.014
  21. Sanders GE (2012) Zebrafish housing, husbandry, health, and care: IACUC considerations. ILAR J 53: 205–207. https://doi.org/10.1093/ilar.53.2.205
  22. Maximino C (2010) Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214: 157–171. https://doi.org/10.1016/j.bbr.2010.05.031
  23. Egan RJ (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205: 38–44. https://doi.org/10.1016/j.bbr.2009.06.022
  24. Robinson KS (2013) Psychopharmacological effects of acute exposure to kynurenic acid (KYNA) in zebrafish. Pharmacol Biochem Behav 108: 54–60. https://doi.org/10.1016/j.pbb.2013.04.002
  25. Cachat JM (2011) Modeling Stress and Anxiety in Zebrafish. In: Kalueff A, Cachat J Zebrafish Models in Neurobehavioral Research. Neuromethods 52 Humana Press. Totowa. NJ. https://doi.org/10.1007/978-1-60761-922-2_3
  26. Kalueff AV (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10: 70–86. https://doi.org/10.1089/zeb.2012.0861
  27. Church M (2010) Risk of first-generation H1-antihistamines: a GA2LEN position paper. Allergy 65: 459–466. https://doi.org/10.1111/j.1398-9995.2009.02325.x
  28. Gray SL (2015) Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Int Med 175: 401–407. https://doi.org/10.1001/jamainternmed.2014.7663
  29. Timmerman H (2000) Factors involved in the absence of sedative effects by the second-generation antihistamines. Allergy Suppl 60: 5–10. https://doi.org/10.1034/j.1398-9995.2000.055supp60005.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (160KB)
3.

Download (303KB)

Copyright (c) 2023 А.В. Жданов, М.В. Комелькова, М.А. Горбунова, С.Л. Хацко, А.П. Сарапульцев, А.В. Калуев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies